【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為
.
(1)寫出曲線C1和C2的直角坐標(biāo)方程;
(2)已知P為曲線C2上的動(dòng)點(diǎn),過點(diǎn)P作曲線C1的切線,切點(diǎn)為A,求|PA|的最大值.
【答案】(1)C1的直角坐標(biāo)方程為
;C2的直角坐標(biāo)方程為
;(2)
.
【解析】
(1)由
(
為參數(shù)),消去參數(shù)
,可得曲線C1的直角坐標(biāo)方程.由
,得ρ2+3ρ2sin2θ=4,結(jié)合極坐標(biāo)與直角坐標(biāo)的互化公式可得曲線C2的直角坐標(biāo)方程;
(2)由P為曲線C2上的動(dòng)點(diǎn),設(shè)P(2cosα,sinα),則P與圓的圓心的距離
,利用二次函數(shù)求最值,再由勾股定理求|PA|的最大值.
解:(1)由
(
為參數(shù)),消去參數(shù)
,可得
.
∴曲線C1的直角坐標(biāo)方程為
;
由
,得ρ2+3ρ2sin2θ=4,
即x2+y2+3y2=4,即
.
∴曲線C2的直角坐標(biāo)方程為
;
(2)∵P為曲線C2上的動(dòng)點(diǎn),又曲線C2的參數(shù)方程為![]()
∴設(shè)P(2cosα,sinα),
則P與圓C1的圓心的距離
.
要使|PA|的最大值,則d最大,當(dāng)sinα
時(shí),d有最大值為
.
∴|PA|的最大值為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年是我國垃圾分類逐步凸顯效果關(guān)鍵的一年.在國家高度重視,重拳出擊的前提下,高強(qiáng)度、高頻率的宣傳教育能有效縮短我國生活垃圾分類走入世界前列所需的時(shí)間,打好垃圾分類這場“持久戰(zhàn)”,“全民戰(zhàn)”.某市做了一項(xiàng)調(diào)查,在一所城市中學(xué)和一所縣城中學(xué)隨機(jī)各抽取15名學(xué)生,對垃圾分類知識進(jìn)行問答,滿分為100分,他們所得成績?nèi)缦拢?/span>
城市中學(xué)學(xué)生成績分別為:73 71 83 86 92 70 88 93 73 97 87 88 74 86 85
縣城中學(xué)學(xué)生成績分別為:60 64 71 91 60 76 72 85 81 72 62 74 73 63 72
![]()
(1)根據(jù)上述兩組數(shù)據(jù)在圖中完成兩所中學(xué)學(xué)生成績的莖葉圖,并通過莖葉圖比較兩所中學(xué)學(xué)生成績的平均分及分散程度;(不要求計(jì)算出具體值,給出結(jié)論即可)
(2)記這30名學(xué)生成績80分以上為良好,80分以下為一般,完善表格,并判斷是否有99%的把握認(rèn)為該城市中學(xué)和縣城中學(xué)的學(xué)生在了解垃圾分類知識上有差異?(結(jié)果保留三位小數(shù))
學(xué)生成績 | 良好 | 一般 | 合計(jì) |
城市中學(xué)學(xué)生 | |||
縣城中學(xué)學(xué)生 | |||
合計(jì) |
附:
.
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】菱形
中,![]()
平面
,
,
,
![]()
(1)證明:直線
平面
;
(2)求二面角
的正弦值;
(3)線段
上是否存在點(diǎn)
使得直線
與平面
所成角的正弦值為
?若存在,求
;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左頂點(diǎn)為
,左、右焦點(diǎn)分別為
,離心率為
,
是橢圓上的一個(gè)動(dòng)點(diǎn)(不與左、右頂點(diǎn)重合),且
的周長為6,點(diǎn)
關(guān)于原點(diǎn)的對稱點(diǎn)為
,直線
交于點(diǎn)
.
![]()
(1)求橢圓方程;
(2)若直線
與橢圓交于另一點(diǎn)
,且
,求點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過雙曲線C:
1(a>0,b>0)右焦點(diǎn)F2作雙曲線一條漸近線的垂線,垂足為P,與雙曲線交于點(diǎn)A,若
,則雙曲線C的漸近線方程為( )
A.y=±
xB.y=±xC.y=±2xD.y=±
x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(Ⅰ)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若曲線
在點(diǎn)
處的切線
與曲線
切于點(diǎn)
,求
的值;
(Ⅲ)若
恒成立,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐
中,
與
均為等腰直角三角形,且
,
,
為
上一點(diǎn),且
平面
.
![]()
(1)求證:
;
(2)過
作一平面分別交
,
,
于
,
,
,若四邊形
為平行四邊形,求多面體
的表面積.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com