【題目】某高校調查了200名學生每周的自習時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習時間的范圍是[17.5,30],樣本數據分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根據直方圖,這200名學生中每周的自習時間不少于22.5小時的人數是
![]()
A. 56 B. 60 C. 120 D. 140
科目:高中數學 來源: 題型:
【題目】如圖,平面ABCD⊥平面ADEF,其中四邊形ABCD為矩形,四邊形ADEF為梯形,AF∥DE,AF⊥EF,AF=AD=2AB=2DE=2.
![]()
(1)求證:CE∥面ABF;
(2)求直線DE與平面BDF所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標坐標系
中,曲線
的參數方程為
(
為參數),曲線
:
.以
為極點,
軸的非負半軸為極軸,與直角坐標系
取相同的長度單位,建立極坐標系.
(1)求曲線
的極坐標方程;
(2)射線
(
)與曲線
的異于極點的交點為
,與曲線
的交點為
,求
.
【答案】(1)
的極坐標方程為
,
的極坐標方程為
;(2)
.
【解析】試題分析:(1)先根據三角函數平方關系消參數得曲線
,再根據
將曲線
的
極坐標方程;(2)將
代人曲線
的極坐標方程,再根據
求
.
試題解析:(1)曲線
的參數方程
(
為參數)
可化為普通方程
,
由
,可得曲線
的極坐標方程為
,
曲線
的極坐標方程為
.
(2)射線
(
)與曲線
的交點
的極徑為
,
射線
(
)與曲線
的交點
的極徑滿足
,解得
,
所以
.
【題型】解答題
【結束】
23
【題目】設函數
.
(1)設
的解集為
,求集合
;
(2)已知
為(1)中集合
中的最大整數,且
(其中
,
,
為正實數),求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量
,其中
.函數
的圖象過點
,點
與其相鄰的最高點的距離為4.
(Ⅰ)求函數
的單調遞減區間;
(Ⅱ)計算
的值;
(Ⅲ)設函數
,試討論函數
在區間 [0,3] 上的零點個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在△
中,
,
分別為
,
的中點,
為
的中點,
,
.將△
沿
折起到△
的位置,使得平面
平面
,
為
的中點,如圖2.
![]()
(1)求證:
平面
;
(2)求證:平面
平面
;
(3)線段
上是否存在點
,使得
平面
?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有下列命題:①若
,則
;②若
,則存在唯一實數
,使得
;③若
,則
;④若
,且
與
的夾角為鈍角,則
;⑤若平面內定點
滿足
,則
為正三角形.其中正確的命題序號為 ________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
(
)在同一半周期內的圖象過點
,
,
,其中
為坐標原點,
為函數
圖象的最高點,
為函數
的圖象與
軸的正半軸的交點,
為等腰直角三角形.
![]()
(1)求
的值;
(2)將
繞原點
按逆時針方向旋轉角
,得到
,若點
恰好落在曲線
(
)上(如圖所示),試判斷點
是否也落在曲線
(
)上,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com