【題目】選修4-4:坐標系與參數方程
在平面直角坐標系
中,圓
:
,直線
:
,直線
過點
,傾斜角為
,以原點
為極點,
軸的正半軸為極軸建立極坐標系.
(1)寫出直線
與圓
的交點極坐標及直線
的參數方程;
(2)設直線
與圓
交于
,
兩點,求
的值.
科目:高中數學 來源: 題型:
【題目】已知平面內一動點
(
)到點
的距離與點
到
軸的距離的差等于1,
(1)求動點
的軌跡
的方程;
(2)過點
的直線
與軌跡
相交于不同于坐標原點
的兩點
,求
面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年,某地認真貫徹落實中央十九大精神和各項宏觀調控政策,經濟運行平穩增長,民生保障持續加強,惠民富民成效顯著,城鎮居民收入穩步增長,收入結構穩中趨優.據當地統計局公布的數據,現將8月份至12月份當地的人均月收入增長率如圖(一)與人均月收入繪制成如圖(二)所示的不完整的條形統計圖.現給出如下信息:
![]()
①10月份人均月收入增長率為
;
②11月份人均月收入約為1442元;
③12月份人均月收入有所下降;
④從上圖可知該地9月份至12月份這四個月與8月份相比人均月收入均得到提高.
其中正確的信息個數為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
:
的離心率
,左頂點為
.過點
作直線
交橢圓
于另一點
,交
軸于點
,點
為坐標原點.
(1)求橢圓
的方程:
(2)已知
為
的中點,是否存在定點
,對任意的直線
,
恒成立?若存在,求出點
的坐標;若不存在說明理由;
(3)過
點作直線
的平行線與橢圓
相交,
為其中一個交點,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列有關平面向量分解定理的四個命題:
(1)一個平面內有且只有一對不平行的向量可作為表示該平面所有向量的基;
(2)一個平面內有無數多對不平行向量可作為表示該平面內所有向量的基;
(3)平面向量的基向量可能互相垂直;
(4)一個平面內任一非零向量都可唯一地表示成該平面內三個互不平行向量的線性組合.
其中正確命題的個數是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知城市
周邊有兩個小鎮
、
,其中鄉鎮
位于城市
的正東方
處,鄉鎮
與城市
相距
,
與
夾角的正切值為2,為方便交通,現準備建設一條經過城市
的公路
,使鄉鎮
和
分別位于
的兩側,過
和
建設兩條垂直
的公路
和
,分別與公路
交匯于
、
兩點,以
為原點,
所在直線為
軸,建立如圖所示的平面直角坐標系
.
![]()
(1)當兩個交匯點
、
重合,試確定此時
路段長度;
(2)當
,計算此時兩個交匯點
、
到城市
的距離之比;
(3)若要求兩個交匯點
、
的距離不超過
,求
正切值的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線
的焦點為
,
,
是拋物線上的兩個動點,且
,過
,
兩點分別作拋物線的切線,設其交點為
.
(1)若直線
與
,
軸分別交于點
,
,且
的面積為
,求
的值;
(2)求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】十九大以來,某貧困地區扶貧辦積極貫徹落實國家精準扶貧的政策要求,帶領廣大農村地區人民群眾脫貧奔小康。經過不懈的奮力拼搏,新農村建設取得巨大進步,農民年收入也逐年增加。為了更好的制定2019年關于加快提升農民年收人力爭早日脫貧的工作計劃,該地扶貧辦統計了2018年50位農民的年收人并制成如下頻率分布直方圖:
![]()
(1)根據頻率分布直方圖,估計50位農民的年平均收入
(單位:千元)(同一組數據用該組數據區間的中點值表示);
(2)由頻率分布直方圖,可以認為該貧困地區農民年收入
服從正態分布
,其中
近似為年平均收入
,
近似為樣本方差
,經計算得
.利用該正態分布,求:
(i)在2019年脫貧攻堅工作中,若使該地區約有占總農民人數的
的農民的年收入高于扶貧辦制定的最低年收入標準,則最低年收入大約為多少千元?
(ii)為了調研“精準扶貧,不落一人”的政策要求落實情況, 扶貧辦隨機走訪了1000位農民。若每個農民的年收人相互獨立,問:這1000位農民中的年收入不少于12.14千元的人數最有可能是多少?
附:參考數據與公式
,若
~
,則①
;②
;③
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com