【題目】若函數(shù)
有三個不同的零點,則實數(shù)
的取值范圍是( )
A.
B.![]()
C.
D.![]()
【答案】B
【解析】
令
,可得
,令
,可得
,令
,令
,其中
且
,作出函數(shù)
的圖象,根據(jù)函數(shù)
有三個零點可得出
的兩根的取值范圍,利用二次函數(shù)的零點分布得出關(guān)于實數(shù)
的不等式組,可求得實數(shù)
的取值范圍.
,則
.
令
,可得
,
令
,則
,即
,設(shè)
,
構(gòu)造函數(shù)
,其中
且
,
則
,令
,得
,
列表如下:
|
|
|
|
|
|
|
|
|
|
| 單調(diào)遞增 | 單調(diào)遞增 | 極大值 | 單調(diào)遞減 |
函數(shù)
(
且
)的圖象如下圖所示:
![]()
由于函數(shù)
有三個不同的零點,而關(guān)于
的二次方程
至多有兩個根.
當(dāng)關(guān)于
的二次方程
有兩根時,設(shè)這兩根分別為
、
,則
,
,
此時,
,解得
;
若
,則
,關(guān)于
的二次方程為
,兩根分別為
,
,
在
且
時無實根,
只有一個實根,
此時,函數(shù)
只有兩個零點,不合乎題意.
綜上所述,實數(shù)
的取值范圍是
.
故選:B.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
:
的焦點為
,直線
:
與拋物線
交于
,
兩點.
(1)若
,求直線的方程;
(2)過點
作直線
交拋物線
于
,
兩點,若線段
,
的中點分別為
,
,直線
與
軸的交點為
,求點
到直線
與
距離和的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把方程
表示的曲線作為函數(shù)
的圖象,則下列結(jié)論正確的是( )
①
在R上單調(diào)遞減
②
的圖像關(guān)于原點對稱
③
的圖象上的點到坐標(biāo)原點的距離的最小值為3
④函數(shù)
不存在零點
A.①③B.①②③C.①③④D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交通安全法有規(guī)定:機(jī)動車行經(jīng)人行橫道時,應(yīng)當(dāng)減速行駛;遇行人正在通過人行橫道,應(yīng)當(dāng)停車讓行.機(jī)動車行經(jīng)沒有交通信號的道路時,遇行人橫過馬路,應(yīng)當(dāng)避讓.我們將符合這條規(guī)定的稱為“禮讓斑馬線”,不符合這條規(guī)定的稱為“不禮讓斑馬線”.下表是六安市某十字路口監(jiān)控設(shè)備所抓拍的5個月內(nèi)駕駛員“不禮讓斑馬線”行為的統(tǒng)計數(shù)據(jù):
月份 | 1 | 2 | 3 | 4 | 5 |
“不禮讓斑馬線”的駕駛員人數(shù) | 120 | 105 | 100 | 85 | 90 |
(1)根據(jù)表中所給的5個月的數(shù)據(jù),可用線性回歸模型擬合
與
的關(guān)系,請用相關(guān)系數(shù)加以說明;
(2)求“不禮讓斑馬線”的駕駛員人數(shù)
關(guān)于月份
之間的線性回歸方程;
(3)若從4,5月份“不禮讓斑馬線”的駕駛員中分別選取4人和2人,再從所選取的6人中任意抽取2人進(jìn)行交規(guī)調(diào)查,求抽取的2人分別來自兩個月份的概率;
參考公式:線性回歸方程
,其中
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角梯形
中,
,
,
,
,
,點E在
上,且
,將三角形
沿線段
折起到
的位置,
(如圖2).
![]()
(1)求證:平面
平面
;
(2)在線段
上是否存在點M,使
平面
?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
的左、右頂點分別為
,
,上、下頂點分別為
,
,四邊形
的面積為
,坐標(biāo)原點O到直線
的距離為
.
(1)求橢圓C的方程;
(2)過橢圓C上一點P作兩條直線,分別與橢圓C相交于異于點P的點A,B,若四邊形
為平行四邊形,探究四邊形
的面積是否為定值.若是,求出此定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=axex,g(x)=x2+2x+b,若曲線y=f(x)與曲線y=g(x)都過點P(1,c).且在點P處有相同的切線l.
(Ⅰ)求切線l的方程;
(Ⅱ)若關(guān)于x的不等式k[ef(x)]≥g(x)對任意x∈[﹣1,+∞)恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三人參加競答游戲,一輪三個題目,每人回答一題為體現(xiàn)公平,制定如下規(guī)則:
①第一輪回答順序為甲、乙、丙;第二輪回答順序為乙、丙、甲;第三輪回答順序為丙,甲、乙;第四輪回答順序為甲、乙、丙;…,后面按此規(guī)律依次向下進(jìn)行;
②當(dāng)一人回答不正確時,競答結(jié)束,最后一個回答正確的人勝出.
已知,每次甲回答正確的概率為
,乙回答正確的概率為
,丙回答正確的概率為
,三個人回答每個問題相互獨(dú)立.
(1)求一輪中三人全回答正確的概率;
(2)分別求甲在第一輪、第二輪、第三輪勝出的概率;
(3)記
為甲在第
輪勝出的概率,
為乙在第
輪勝出的概率,求
與
,并比較
與
的大小.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com