【題目】區(qū)塊鏈技術(shù)被認(rèn)為是繼蒸汽機(jī)、電力、互聯(lián)網(wǎng)之后,下一代顛覆性的核心技術(shù)區(qū)塊鏈作為構(gòu)造信任的機(jī)器,將可能徹底改變整個人類社會價值傳遞的方式,2015年至2019年五年期間,中國的區(qū)塊鏈企業(yè)數(shù)量逐年增長,居世界前列現(xiàn)收集我國近5年區(qū)塊鏈企業(yè)總數(shù)量相關(guān)數(shù)據(jù),如表
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
編號 | 1 | 2 | 3 | 4 | 5 |
企業(yè)總數(shù)量y(單位:千個) | 2.156 | 3.727 | 8.305 | 24.279 | 36.224 |
注:參考數(shù)據(jù)
(其中z=lny).
附:樣本(xi,yi)(i=1,2,…,n)的最小二乘法估計公式為![]()
(1)根據(jù)表中數(shù)據(jù)判斷,y=a+bx與y=cedx(其中e=2.71828…,為自然對數(shù)的底數(shù)),哪一個回歸方程類型適宜預(yù)測未來幾年我國區(qū)塊鏈企業(yè)總數(shù)量?(給出結(jié)果即可,不必說明理由)
(2)根據(jù)(1)的結(jié)果,求y關(guān)于x的回歸方程(結(jié)果精確到小數(shù)點后第三位);
(3)為了促進(jìn)公司間的合作與發(fā)展,區(qū)塊鏈聯(lián)合總部決定進(jìn)行一次信息化技術(shù)比賽,邀請甲、乙、丙三家區(qū)塊鏈公司參賽比賽規(guī)則如下:①每場比賽有兩個公司參加,并決出勝負(fù);②每場比賽獲勝的公司與未參加此場比賽的公司進(jìn)行下一場的比賽;③在比賽中,若有一個公司首先獲勝兩場,則本次比賽結(jié)束,該公司就獲得此次信息化比賽的“優(yōu)勝公司”,已知在每場比賽中,甲勝乙的概率為
,甲勝丙的概率為
,乙勝丙的概率為
,請通過計算說明,哪兩個公司進(jìn)行首場比賽時,甲公司獲得“優(yōu)勝公司”的概率最大?
【答案】(1)選y=cedx;(2)
;(3)甲與丙兩公司進(jìn)行首場比賽時,甲公司獲得“優(yōu)勝公司”的概率大
【解析】
(1)直接由表中數(shù)據(jù)可得選擇回歸方程y=cedx,適宜預(yù)測未來幾年我國區(qū)塊鏈企業(yè)總數(shù)量;
(2)對y=cedx兩邊取自然對數(shù),得lny=lnc+dx,轉(zhuǎn)化為線性回歸方程求解;
(3)對于首場比賽的選擇有以下三種情況:A、甲與乙先賽;B、甲與丙先賽;C、丙與乙先賽,由已知結(jié)合互斥事件與相互獨立事件的概率計算公式分別求得甲公司獲得“優(yōu)勝公司”的概率得結(jié)論.
(1)選擇回歸方程y=cedx,適宜預(yù)測未來幾年我國區(qū)塊鏈企業(yè)總數(shù)量;
(2)對y=cedx兩邊取自然對數(shù),得lny=lnc+dx,
令z=lny,a=lnc,b=d,得z=a+bx.
由于
,
,
,
∵
0.752,
.
∴z關(guān)于x的回歸方程為
,
則y關(guān)于x的回歸方程為
;
(3)對于首場比賽的選擇有以下三種情況:
A、甲與乙先賽;B、甲與丙先賽;C、丙與乙先賽.
由于在每場比賽中,甲勝乙的概率為
,甲勝丙的概率為
,乙勝丙的概率為
,
則甲公司獲勝的概率分別是:
P(A)
;
P(B)
;
P(C)
.
由于
,
∴甲與丙兩公司進(jìn)行首場比賽時,甲公司獲得“優(yōu)勝公司”的概率大.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
過橢圓
的左、右焦點
和短軸的端點
(點
在點
上方).
為圓
上的動點(點
不與
重合),直線
分別與橢圓交于點
,其中點
構(gòu)成四邊形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求四邊形
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線
的參數(shù)方程為
(
為參數(shù)),曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點為極點,以
軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線
與曲線
的公共點的極坐標(biāo);
(2)若點
的極坐標(biāo)為
,設(shè)曲線
與
軸相交于點
,則在曲線
上是否存在點
,使得
,若存在,求出點
的直角坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,且以橢圓上的點和長軸兩端點為頂點的三角形的面積的最大值為
.
(1)求橢圓
的方程;
(2)經(jīng)過定點
的直線
交橢圓
于不同的兩點
、
,點
關(guān)于
軸的對稱點為
,試證明:直線
與
軸的交點
為一個定點,且
(
為原點).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《周髀算經(jīng)》是中國古代重要的數(shù)學(xué)著作,其記載的“日月歷法”曰:“陰陽之?dāng)?shù),日月之法,十九歲為一章,四章為一部,部七十六歲,二十部為一遂,遂千百五二十歲,….生數(shù)皆終,萬物復(fù)蘇,天以更元作紀(jì)歷”,某老年公寓住有20位老人,他們的年齡(都為正整數(shù))之和恰好為一遂,其中年長者已是奔百之齡(年齡介于90至100),其余19人的年齡依次相差一歲,則年長者的年齡為( )
A.94B.95C.96D.98
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場推出消費抽現(xiàn)金活動,顧客消費滿1000元可以參與一次抽獎,該活動設(shè)置了一等獎、二等獎、三等獎以及參與獎,獎金分別為:一等獎200元、二等獎100元、三等獎50元、參與獎20元,具體獲獎人數(shù)比例分配如圖,則下列說法中錯誤的是( )
![]()
A.獲得參與獎的人數(shù)最多
B.各個獎項中一等獎的總金額最高
C.二等獎獲獎人數(shù)是一等獎獲獎人數(shù)的兩倍
D.獎金平均數(shù)為
元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科研團(tuán)隊對
例新冠肺炎確診患者的臨床特征進(jìn)行了回顧性分析.其中
名吸煙患者中,重癥人數(shù)為
人,重癥比例約為
;
名非吸煙患者中,重癥人數(shù)為
人,重癥比例為
.
(1)根據(jù)以上數(shù)據(jù)完成
列聯(lián)表;
![]()
(2)根據(jù)(1)中列聯(lián)表數(shù)據(jù),能否在犯錯誤的概率不超過
的前提下認(rèn)為新冠肺炎重癥與吸煙有關(guān)?
(3)已知每例重癥患者平均治療費用約為
萬元,每例輕癥患者平均治療費用約為
萬元.根據(jù)(1)中列聯(lián)表數(shù)據(jù),分別求吸煙患者和非吸煙患者的平均治療費用.(結(jié)果保留兩位小數(shù))
附:
|
|
|
|
|
|
|
|
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,M,N,P分別是C1D1,BC,A1D1的中點,有下列四個結(jié)論:
①AP與CM是異面直線;②AP,CM,DD1相交于一點;③MN∥BD1;
④MN∥平面BB1D1D.
其中所有正確結(jié)論的編號是( )
![]()
A.①④B.②④C.①④D.②③④
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com