【題目】甲、乙兩地相距500千米,一輛貨車從甲地行駛到乙地,規(guī)定速度不得超過100千米
小時.已知貨車每小時的運輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度
(千米
時)的平方成正比,比例系數(shù)為0.01;固定部分為
元(
).
(1)把全程運輸成本
(元)表示為速度
(千米
時)的函數(shù),并指出這個函數(shù)的定義域;
(2)為了使全程運輸成本最小,汽車應(yīng)以多大速度行駛?
【答案】(1)
;(2)
千米
時.
【解析】
⑴求出汽車從甲地勻速行駛到乙地所用時間,根據(jù)貨車每小時的運輸成本可變部分和固定部分組成,可求得全程運輸成本以及函數(shù)的定義域
⑵利用基本不等式可得
,當(dāng)且僅當(dāng)
,即
時,等號成立,然后分類討論即可得到答案
(1)依題意知汽車從甲地勻速行駛到乙地所用時間為
,全程運輸成本為![]()
故所求函數(shù)及其定義域為![]()
(2)依題意知
都為正數(shù),故有
,當(dāng)且僅當(dāng)
,即
時,等號成立
①若
,即
時,則當(dāng)
時,全程運輸成本
最小
②若
,即
時,則當(dāng)
時,
函數(shù)在
上單調(diào)遞減,也即當(dāng)
時,全程運輸成本
最小.
綜上知,為使全程運輸成本
最小,當(dāng)
時行駛速度應(yīng)為
千米
時;
當(dāng)
時行駛速度應(yīng)為
千米
時.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐
中,
,
為線段
的中點,
為線段
上一點.
![]()
(1)求證:
;
(2)求證:平面
平面
;
(3)當(dāng)
平面
時,求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究所計劃利用“神舟十號”宇宙飛船進行新產(chǎn)品搭載實驗,計劃搭載新產(chǎn)品甲,乙,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實驗費用和預(yù)計產(chǎn)生收益來決定具體安排,通過調(diào)查,有關(guān)數(shù)據(jù)如表:
產(chǎn)品甲(件) | 產(chǎn)品乙(件) | ||
研制成本與搭載費用之和(萬元/件) | 200 | 300 | 計劃最大資金額3000元 |
產(chǎn)品重量(千克/件) | 10 | 5 | 最大搭載重量110千克 |
預(yù)計收益(萬元/件) | 160 | 120 |
試問:如何安排這兩種產(chǎn)品的件數(shù)進行搭載,才能使總預(yù)計收益達到最大,最大收益是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定直線
,拋物線
,且拋物線
的焦點在直線
上.
(1)求拋物線
的方程
(2)若
的三個頂點都在拋物線
上,且點
的縱坐標(biāo)
,
的重心恰是拋物線
的焦點
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如右圖所示,一座圓拱(圓的一部分)橋,當(dāng)水面在圖位置m時,拱頂離水面2 m,水面寬 12 m,當(dāng)水面下降1 m后,水面寬多少米?
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD中AC⊥BD,CE=2AE=2BE=2DE=2,將四邊形ABCD沿著BD折疊,得到圖2所示的三棱錐A﹣BCD,其中AB⊥CD. ![]()
(1)證明:平面ACD⊥平面BAD;
(2)若F為CD中點,求二面角C﹣AB﹣F的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x+
)2+y2=16,點A(
,0),Q是圓上一動點,AQ的垂直平分線交CQ于點M,設(shè)點M的軌跡為E.
(1)求軌跡E的方程;
(2)過點P(1,0)的直線
交軌跡E于兩個不同的點A,B,△AOB(O是坐標(biāo)原點)的面積S=
,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)將函數(shù)y=sin2x的圖象向左平移
個單位,向下平移b個單位,得到函數(shù)y=f(x)的圖象,求ab的值;
(Ⅲ)求函數(shù)f(x)在
上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時,f(x)=-x2+ax.
(1)若a=-2,求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)為R上的單調(diào)減函數(shù),
①求a的取值范圍;
②若對任意實數(shù)m,f(m-1)+f(m2+t)<0恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com