【題目】如圖,
垂直圓O所在的平面,
是圓O的一條直徑,C為圓周上異于A,B的動(dòng)點(diǎn),D為弦
的中點(diǎn),
.
![]()
(1)證明:平面
平面
;
(2)若
,求平面
與平面
所成銳二面角的余弦值.
【答案】(1)見解析(2)![]()
【解析】
(1)根據(jù)
垂直圓O所在的平面,有
,易證
.由線面垂直的判定定理得到
平面
,然后由面面垂直的判定定理證明.
(2)建立空間直角坐標(biāo)系,分別求得平面
,平面
的一個(gè)法向量,代入二面角的向量公式求解.
(1)證明:因?yàn)?/span>
垂直圓O所在的平面,所以
,
因?yàn)?/span>D為弦
的中點(diǎn),O為圓O的圓心,所以
.
因?yàn)?/span>
,所以
平面
,
又
平面
,所以平面
平面
.
(2)如圖所示:
![]()
以O為原點(diǎn),建立空間直角坐標(biāo)系
.
則
從而
設(shè)平面
的法向量為
,
則
,即![]()
令
,得
.
由(1)可得平面
的一個(gè)法向量為
則平面
與平面
所成銳二面角的余弦值為![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年全國(guó)掀起了垃圾分類的熱潮,垃圾分類已經(jīng)成為新時(shí)尚,同時(shí)帶動(dòng)了垃圾桶的銷售.某垃圾桶生產(chǎn)和銷售公司通過(guò)數(shù)據(jù)分析,得到如下規(guī)律:每月生產(chǎn)
只垃圾桶的總成本
由固定成本和生產(chǎn)成本組成,其中固定成本為100萬(wàn)元,生產(chǎn)成本為
.
(1)寫出平均每只垃圾桶所需成本
關(guān)于
的函數(shù)解析式,并求該公司每月生產(chǎn)多少只垃圾桶時(shí),可使得平均每只所需成本費(fèi)用最少?
(2)假設(shè)該類型垃圾桶產(chǎn)銷平衡(即生產(chǎn)的垃圾桶都能賣掉),每只垃圾桶的售價(jià)為
元,
滿足
.若當(dāng)產(chǎn)量為15000只時(shí)利潤(rùn)最大,此時(shí)每只售價(jià)為300元,試求
的值.(利潤(rùn)
銷售收入
成本費(fèi)用)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若關(guān)于
的不等式
在
上恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
。
(1)求函數(shù)
的單調(diào)減區(qū)間;
(2)若函數(shù)
在區(qū)間
上的極大值為8,求在區(qū)間
上的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是( )
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
![]()
![]()
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的![]()
C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x+2﹣2cosx
(1)求函數(shù)f(x)在[
,
]上的最值:
(2)若存在x∈(0,
)使不等式f(x)≤ax成立,求實(shí)數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為
(t為參數(shù),0).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為
.
(Ⅰ)寫出曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C交于A,B兩點(diǎn),且AB的長(zhǎng)度為2
,求直線l的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,過(guò)點(diǎn)P(0,1)且互相垂直的兩條直線分別與圓O:
交于點(diǎn)A,B,與圓M:(x﹣2)2+(y﹣1)2=1交于點(diǎn)C,D.
![]()
(1)若AB=
,求CD的長(zhǎng);
(2)若CD中點(diǎn)為E,求△ABE面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校進(jìn)行了一次創(chuàng)新作文大賽,共有100名同學(xué)參賽,經(jīng)過(guò)評(píng)判,這100名參賽者的得分都在
之間,其得分的頻率分布直方圖如圖,則下列結(jié)論錯(cuò)誤的是( )
![]()
A.得分在
之間的共有40人
B.從這100名參賽者中隨機(jī)選取1人,其得分在
的概率為0.5
C.估計(jì)得分的眾數(shù)為55
D.這100名參賽者得分的中位數(shù)為65
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com