【題目】已知
p:
,q:
.
(1)若p是q充分不必要條件,求實數
的取值范圍;
(2)若“非p”是“非q”的充分不必要條件,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=alnx+ax2+bx,(a,b∈R).
(1)設a=1,f(x)在x=1處的切線過點(2,6),求b的值;
(2)設b=a2+2,求函數f(x)在區間[1,4]上的最大值;
(3)定義:一般的,設函數g(x)的定義域為D,若存在x0∈D,使g(x0)=x0成立,則稱x0為函數g(x)的不動點.設a>0,試問當函數f(x)有兩個不同的不動點時,這兩個不動點能否同時也是函數f(x)的極值點?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某賓館在裝修時,為了美觀,欲將客房的窗戶設計成半徑為1m的圓形,并用四根木條將圓分成如圖所示的9個區域,其中四邊形ABCD為中心在圓心的矩形,現計劃將矩形ABCD區域設計為可推拉的窗口. ![]()
(1)若窗口ABCD為正方形,且面積大于
m2(木條寬度忽略不計),求四根木條總長的取值范圍;
(2)若四根木條總長為6m,求窗口ABCD面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從1到9這9個數字中取3個偶數和4個奇數,試問:
(1)能組成多少個沒有重復數字的七位數?
(2)在(1)中的七位數中,偶數排在一起,奇數也排在一起的有多少個?
(3)在(1)中任意2個偶數都不相鄰的七位數有多少個?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某賓館在裝修時,為了美觀,欲將客房的窗戶設計成半徑為1m的圓形,并用四根木條將圓分成如圖所示的9個區域,其中四邊形ABCD為中心在圓心的矩形,現計劃將矩形ABCD區域設計為可推拉的窗口. ![]()
(1)若窗口ABCD為正方形,且面積大于
m2(木條寬度忽略不計),求四根木條總長的取值范圍;
(2)若四根木條總長為6m,求窗口ABCD面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場在國慶黃金周的促銷活動中,對10月1日9時至14時的銷售額進行統計,其頻率分布直方圖如圖所示.已知9時至10時的銷售額為3萬元,則11時至12時的銷售額為萬元. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校1800名學生在一次百米測試中,成績全部介于13秒與18秒之間,抽取其中50名學生組成一個樣本,將測試結果按如下方式分成五組:第一組
,第二組
……,第五組
,如圖是按上述分組方法得到的頻率分布直方圖.
![]()
(1)請估計學校1800名學生中,成績屬于第四組的人數;
(2)若成績小于15秒認為良好,求該樣本中在這次百米測試中成績良好的人數;
(3)請根據頻率分布直方圖,求樣本數據的眾數、平均數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,直線
的直角坐標方程為:
,曲線
的方程為
,現建立以
為極點,
軸的正半軸為極軸的極坐標系.
(1)寫出直線
極坐標方程,曲線
的參數方程;
(2)過點
平行于直線
的直線與曲線
交于
、
兩點,若
,求點
軌跡的直角坐標方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某茶樓有四類茶飲,假設為顧客準備泡茶工具所需的時間互相獨立,且都是整數分鐘,經統計以往為100位顧客準備泡茶工具所需的時間(t),結果如下:
類別 | 鐵觀音 | 龍井 | 金駿眉 | 大紅袍 |
顧客數(人) | 20 | 30 | 40 | 10 |
時間t(分鐘/人) | 2 | 3 | 4 | 6 |
注:服務員在準備泡茶工具時的間隔時間忽略不計,并將頻率視為概率.
(1)求服務員恰好在第6分鐘開始準備第三位顧客的泡茶工具的概率;
(2)用X表示至第4分鐘末已準備好了工具的顧客人數,求X的分布列及數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com