【題目】已知點
,圓
.
(1)若點
點
都為圓
上的動點,且
,求弦
中點所形成的曲線
的方程;
(2)若直線
過點
,且被(1)中曲線
截得的弦長為
,求直線
的方程.
科目:高中數學 來源: 題型:
【題目】風景秀美的寶湖畔有四棵高大的銀杏樹,記作A,B,P,Q,湖岸部分地方圍有鐵絲網不能靠近.欲測量P,Q兩棵樹和A,P兩棵樹之間的距離,現可測得A,B兩點間的距離為100 m,∠PAB=75°,∠QAB=45°,∠PBA=60°,∠QBA=90°,如圖所示.則P,Q兩棵樹和A,P兩棵樹之間的距離各為多少?
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,矩形ABCD的兩條對角線相交于點M(2,0),AB邊所在直線的方程為x-3y-6=0,點T(-1,1)在AD邊所在直線上.求:
![]()
(1) AD邊所在直線的方程;
(2) DC邊所在直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的等腰梯形ABCD中,
,
,E為CD中點.若沿AE將三角形DAE折起,并連接DB,DC,得到如圖所示的幾何體D-ABCE,在圖中解答以下問題:
![]()
(1)設G為AD中點,求證:
平面GBE;
(2)若平面
平面ABCE,且F為AB中點,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】海水養殖場進行某水產品的新、舊網箱養殖方法的產量對比,收獲時各隨機抽取了100個網箱,測量各箱水產品的產量(單位:kg), 其頻率分布直方圖如下:
![]()
(1)記A表示事件“舊養殖法的箱產量低于50 kg”,估計A的概率;
(2)填寫下面列聯表,并根據列聯表判斷是否有99%的把握認為箱產量與養殖方法有關:
箱產量<50 kg | 箱產量≥50 kg | |
舊養殖法 | ||
新養殖法 |
(3)根據箱產量的頻率分布直方圖,對這兩種養殖方法的優劣進行比較.
附:
P( | 0.050 0.010 0.001 |
k | 3.841 6.635 10.828 |
. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,四棱錐P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=
AD,E,F分別為線段AD,PC的中點.
![]()
(1)求證:AP∥平面BEF;
(2)求證:BE⊥平面PAC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某生產基地有五臺機器,現有五項工作待完成,每臺機器完成每項工作后獲得的效益值如表所示.若每臺機器只完成一項工作,且完成五項工作后獲得的效益值總和最大,則下列敘述錯誤的的是_____________.
![]()
①甲只能承擔第四項工作
②乙不能承擔第二項工作
③丙可以不承擔第三項工作
④丁可以承擔第三項工作
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com