【題目】從某小區抽取100戶居民進行月用電量調查,發現其用電量都在50度至350度之間,頻率分布直方圖如圖所示. ![]()
(1)根據直方圖求x的值,并估計該小區100戶居民的月均用電量(同一組中的數據用該組區間的中點值作代表);
(2)從該小區已抽取的100戶居民中,隨機抽取月用電量超過250度的3戶,參加節約用電知識普及講座,其中恰有ξ戶月用電量超過300度,求ξ的分布列及期望.
【答案】
(1)解:由已知得50×(0.0012+0.0024×2+0.0036+x+0.0060)=1,
解得x=0.0044
設該小區100戶居民的月均用電量為S,
則S=0.0024×50×75+0.0036×50×125+0.0060×50×175+0.0044×50×225+0.0024×50×275+0.0012×50×325=9+22.5+52.5+49.5+33+19.5=186
(2)該小區用電量在(250,300]的用戶數為0.0024×50×100=12,
用電量在(300,350]的用戶數為0.0012×50×100=6,
由已知得ξ的可能取值為0,1,2,3,
ξ=0時,
,
ξ=1時,
,
ξ=2時,
,
ξ=3時, ![]()
所以ξ的分布列是
ξ | 0 | 1 | 2 | 3 |
p |
|
|
|
|
E(ξ)=0×p(ξ=0)+1×p(ξ=1)+2×p(ξ=2)+3×p(ξ=3)=1.
【解析】(1)由已知得50×(0.0012+0.0024×2+0.0036+x+0.0060)=1,由此能求出x,由頻率分布直方圖能求出該小區100戶居民的月均用電量.(2)由已知得ξ的可能取值為0,1,2,3,分別求出相應的概率,由此能求出ξ的分布列及期望.
【考點精析】掌握頻率分布直方圖和離散型隨機變量及其分布列是解答本題的根本,需要知道頻率分布表和頻率分布直方圖,是對相同數據的兩種不同表達方式.用緊湊的表格改變數據的排列方式和構成形式,可展示數據的分布情況.通過作圖既可以從數據中提取信息,又可以利用圖形傳遞信息;在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.
科目:高中數學 來源: 題型:
【題目】若函數f(x)=x3+ax2+bx(a,b∈R)的圖象與x軸相切于一點A(m,0)(m≠0),且f(x)的極大值為
,則m的值為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的上、下焦點分別為
,上焦點
到直線
的距離為3,橢圓
的離心率
.
(1)求橢圓
的方程;
(2)橢圓
,設過點
斜率存在且不為0的直線交橢圓
于
兩點,試問
軸上是否存在點
,使得
?若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=2,D,E,F分別是B1A1 , CC1 , BC的中點,AE⊥A1B1 , D為棱A1B1上的點. ![]()
(1)證明:DF⊥AE;
(2)求平面DEF與平面ABC所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】袋子中裝有除顏色外其他均相同的編號為a,b的兩個黑球和編號為c,d,e的三個紅球,從中任意摸出兩個球.
(1)求恰好摸出1個黑球和1個紅球的概率:
(2)求至少摸出1個黑球的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了調查家庭的月收入與月儲蓄的情況,某居民區的物業工作人員隨機抽取該小區20個家庭,獲得第
個家庭的月收入
(單位:千元)與月儲蓄
(單位:千元)的數據資料,計算得:
,
,
,
,
.
(1)求家庭的月儲蓄
對月收入
的線性回歸方程
;
(2)指出(1)中所求出方程的系數,并判斷變量
與
之間是正相關還是負相關;
(3)若該居民區某家庭月收入為9千元,預測該家庭的月儲蓄.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com