【題目】如圖,在三棱柱
中,平面
底面
,
,
,
,
,
為
的中點,側(cè)棱
.
(1)求證:
平面
;
(2)求直線
與平面
所成角的余弦值.
![]()
【答案】(1)見解析;(2)
.
【解析】試題分析: (1)由
和平面
平面
,平面
平面
,可推得
平面
,進而推得
, 又
,根據(jù)線面垂直的判定定理即可證得;(2)∵面
面
,∴
在面
上的射影
在
上,∴
為直線
與面
所成的角.求出CH和
,代入計算即可.
試題解析:(1)證明:∵
,
為
的中點,∴
,又平面
平面
,平面
平面
,∴
平面
,又
平面
,∴
.
又
,
,∴
面
.
(2)∵面
面
,∴
在面
上的射影
在
上,∴
為直線
與面
所成的角.過
作
于
,連
,
在
中,
.
在
中,
.
∴在
中,
.
∴直線
與面
所成的角的余弦值為![]()
![]()
點睛:本題考查的是線面垂直的判定定理的應(yīng)用以及求線面角,屬于中檔題目. 判定直線和平面垂直的方法:①定義法.②利用判定定理:一條直線和一個平面內(nèi)的兩條相交直線都垂直,則該直線和此平面垂直.③推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條直線也垂直這個平面.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,游客從某旅游景區(qū)的景點A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50m/min.在甲出發(fā)2min后,乙從A乘纜車到B,在B處停留1min后,再從B勻速步行到C.假設(shè)纜車勻速直線運動的速度為130m/min,山路AC長為1260m,經(jīng)測量,cosA=
,cosC=
![]()
(1)求索道AB的長;
(2)問乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?
(3)為使兩位游客在C處互相等待的時間不超過3分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4
4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系
中,圓C的參數(shù)方程為
,(t為參數(shù)),在以原點O為極點,x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
,A,B兩點的極坐標(biāo)分別為
.
(Ⅰ)求圓C的普通方程和直線
的直角坐標(biāo)方程;
(Ⅱ)點P是圓C上任一點,求△PAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某校高一年級學(xué)生參加社區(qū)服務(wù)次數(shù)進行統(tǒng)計,隨機抽取
名學(xué)生作為樣本,得到這
名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:
分組 | 頻數(shù) | 頻率 |
| 10 | 0.25 |
| 25 |
|
|
|
|
| 2 | 0.05 |
合計 |
| 1 |
![]()
(1)求出表中
及圖中
的值;
(2)試估計他們參加社區(qū)服務(wù)的平均次數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至少1人參加社區(qū)服務(wù)次數(shù)在區(qū)間
內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體
中,
在線段
上運動且不與
,
重合,給出下列結(jié)論:
①
;
②
平面
;
③二面角
的大小隨
點的運動而變化;
④三棱錐
在平面
上的投影的面積與在平面
上的投影的面積之比隨
點的運動而變化;
其中正確的是( )
A. ①③④ B. ①③
C. ①②④ D. ①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=f(x)(x∈R)的圖象過點(0,﹣3),且f(x)>0的解集(1,3).
(1)求f(x)的解析式;
(2)求函數(shù)
的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
分別為雙曲線
的左、右頂點,雙曲線的實軸長為
,焦點到漸近線的距離為
.
(1)求雙曲線的方程;
(2)已知直線
與雙曲線的右支交于
兩點,且在雙曲線的右支上存在點
,使
,求
的值及點
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
,
都是單調(diào)遞增數(shù)列,若將這兩個數(shù)列的項按由小到大的順序排成一列(相同的項視為一項),則得到一個新數(shù)列
.
(1)設(shè)數(shù)列
、
分別為等差、等比數(shù)列,若
,
,
,求
;
(2)設(shè)
的首項為1,各項為正整數(shù),
,若新數(shù)列
是等差數(shù)列,求數(shù)列
的前
項和
;
(3)設(shè)
(
是不小于2的正整數(shù)),
,是否存在等差數(shù)列
,使得對任意的
,在
與
之間數(shù)列
的項數(shù)總是
?若存在,請給出一個滿足題意的等差數(shù)列
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線
(
)的焦點,斜率為
的直線交拋物線于
,
(
)兩點,且
.
![]()
(1)求該拋物線的方程;
(2)
為坐標(biāo)原點,
為拋物線上一點,若
,求
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com