【題目】如圖,在三陵錐
中,
為等腰直角三角形,
,
為正三角形,
為
的中點(diǎn).
![]()
(1)證明:平面
平面
;
(2)若二面角
的平面角為銳角,且棱錐
的體積為
,求直線
與平面
所成角的正弦值.
【答案】(1)證明見(jiàn)解析;(2)
.
【解析】
(1)根據(jù)等腰三角形三線合一,可證明線線垂直,再根據(jù)線面垂直判定定理,即可證明;
(2)根據(jù)題意,點(diǎn)
在平面
內(nèi)的射影
在射線
上,再根據(jù)錐體體積公式可知
,由線面垂直的判定定理,可證
平面
,則建系:以
為坐標(biāo)原點(diǎn),
所在直線分別為
軸,
軸,
軸建立空間直角坐標(biāo)系,利用空間向量法,求線面角.
(1)
![]()
證明:∵
,
為
中點(diǎn),∴
,
又
為等邊三角形,
,∴
,
,∴
平面
,
平面
,∴平面
平面
;
(2)由(1)知點(diǎn)
在平面
內(nèi)的射影
在直線
上,又二面角
的平面角為銳角,∴
在射線
上,
,
,∴
,
又
,∴
,即
為
中點(diǎn),取
中點(diǎn)
,連接
,則
,
∴
平面
,∴
兩兩互相垂直,
以
為坐標(biāo)原點(diǎn),
所在直線分別為
軸,
軸,
軸建立空間直角坐標(biāo)系,
![]()
則![]()
![]()
設(shè)平面
的法向量為![]()
由
得![]()
令
,得平面
的一個(gè)法向量為
,
又
,設(shè)
與平面
所成角為
,
則
,
∴直線
與平面
所成角的正弦值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
,函數(shù)![]()
(1)討論函數(shù)
的單調(diào)性;
(2)若
是
的極值點(diǎn),且曲線
在兩點(diǎn)
,
處的切線互相平行,這兩條切線在y軸上的截距分別為
、
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱
中,
,
,
分別為
、
的中點(diǎn).
![]()
(1)證明:
平面
;
(2)已知
與平面
所成的角為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)試行高考考試改革:在高三學(xué)年中舉行5次統(tǒng)一測(cè)試,學(xué)生如果通過(guò)其中2次測(cè)試即可獲得足夠?qū)W分升上大學(xué)繼續(xù)學(xué)習(xí),不用參加其余的測(cè)試,而每個(gè)學(xué)生最多也只能參加5次測(cè)試
假設(shè)某學(xué)生每次通過(guò)測(cè)試的概率都是
,每次測(cè)試時(shí)間間隔恰當(dāng),每次測(cè)試通過(guò)與否互相獨(dú)立.
(1)求該學(xué)生考上大學(xué)的概率.
(2)如果考上大學(xué)或參加完5次測(cè)試就結(jié)束,記該生參加測(cè)試的次數(shù)為X,求X的概率分布及X的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著小汽車的普及,“駕駛證”已經(jīng)成為現(xiàn)代人“必考”的證件之一.若某人報(bào)名參加了駕駛證考試,要順利地拿到駕駛證,他需要通過(guò)四個(gè)科目的考試,其中科目二為場(chǎng)地考試.在一次報(bào)名中,每個(gè)學(xué)員有5次參加科目二考試的機(jī)會(huì)(這5次考試機(jī)會(huì)中任何一次通過(guò)考試,就算順利通過(guò),即進(jìn)入下一科目考試;若5次都沒(méi)有通過(guò),則需重新報(bào)名),其中前2次參加科目二考試免費(fèi),若前2次都沒(méi)有通過(guò),則以后每次參加科目二考試都需要交200元的補(bǔ)考費(fèi).某駕校對(duì)以往2000個(gè)學(xué)員第1次參加科目二考試進(jìn)行了統(tǒng)計(jì),得到下表:
考試情況 | 男學(xué)員 | 女學(xué)員 |
第1次考科目二人數(shù) | 1200 | 800 |
第1次通過(guò)科目二人數(shù) | 960 | 600 |
第1次未通過(guò)科目二人數(shù) | 240 | 200 |
若以上表得到的男、女學(xué)員第1次通過(guò)科目二考試的頻率分別作為此駕校男、女學(xué)員每次通過(guò)科目二考試的概率,且每人每次是否通過(guò)科目二考試相互獨(dú)立.現(xiàn)有一對(duì)夫妻同時(shí)在此駕校報(bào)名參加了駕駛證考試,在本次報(bào)名中,若這對(duì)夫妻參加科目二考試的原則為:通過(guò)科目二考試或者用完所有機(jī)會(huì)為止.
(1)求這對(duì)夫妻在本次報(bào)名中參加科目二考試都不需要交補(bǔ)考費(fèi)的概率;
(2)若這對(duì)夫妻前2次參加科目二考試均沒(méi)有通過(guò),記這對(duì)夫妻在本次報(bào)名中參加科目二考試產(chǎn)生的補(bǔ)考費(fèi)用之和為
元,求
的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】第十三屆全國(guó)人民代表大會(huì)第二次會(huì)議和政協(xié)第十三屆全國(guó)委員會(huì)第二次會(huì)議(簡(jiǎn)稱兩會(huì))將分別于
年
月
日和
月
日在北京開(kāi)幕.全國(guó)兩會(huì)召開(kāi)前夕,某網(wǎng)站推出兩會(huì)熱點(diǎn)大型調(diào)查,調(diào)查數(shù)據(jù)表明,網(wǎng)約車安全問(wèn)題是百姓最為關(guān)心的熱點(diǎn)之一,參與調(diào)查者中關(guān)注此問(wèn)題的約占
.現(xiàn)從參與者中隨機(jī)選出
人,并將這
人按年齡分組:第
組
,第
組
,第
組
,第
組
,第
組
,得到的頻率分布直方圖如圖所示:
![]()
(Ⅰ)現(xiàn)在要從年齡較小的第
,
組中用分層抽樣的方法抽取
人,再?gòu)倪@
人中隨機(jī)抽取
人贈(zèng)送禮品,求抽取的
人中至少有
人年齡在第
組的概率;
(Ⅱ)把年齡在第
,
,
組的人稱為青少年組,年齡在第
,
組的人稱為中老年組,若選出的
人中不關(guān)注網(wǎng)約車安全問(wèn)題的人中老年人有
人,問(wèn)是否有
的把握認(rèn)為是否關(guān)注網(wǎng)約車安全問(wèn)題與年齡有關(guān)?附:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“割圓術(shù)”是劉徽最突出的數(shù)學(xué)成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計(jì)算圓的周長(zhǎng),面積已經(jīng)圓周率的基礎(chǔ),劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個(gè)近似數(shù)值,這個(gè)結(jié)果是當(dāng)時(shí)世界上圓周率計(jì)算的最精確數(shù)據(jù).如圖,當(dāng)分割到圓內(nèi)接正六邊形時(shí),某同學(xué)利用計(jì)算機(jī)隨機(jī)模擬法向圓內(nèi)隨機(jī)投擲點(diǎn),計(jì)算得出該點(diǎn)落在正六邊形內(nèi)的頻率為0.8269,那么通過(guò)該實(shí)驗(yàn)計(jì)算出來(lái)的圓周率近似值為(參考數(shù)據(jù):
)
![]()
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列五個(gè)命題中真命題的個(gè)數(shù)是( )
(1)若
是奇函數(shù),則
的圖像關(guān)于
軸對(duì)稱;
(2)若
,則
;
(3)若函數(shù)
對(duì)任意
滿足
,則8是函數(shù)
的一個(gè)周期;
(4)命題“存在
,
”的否定是“任意
,
”;
(5)已知函數(shù)
,若
,則
.
A.2B.3C.4D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
在點(diǎn)
處的切線與直線
垂直.
(1)若函數(shù)
在區(qū)間
上存在極值,求實(shí)數(shù)
的取值范圍;
(2)求證:當(dāng)
時(shí),
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com