【題目】“一帶一路”是“絲綢之路經濟帶”和“21世紀海上絲綢之路”的簡稱.某市為了了解人們對“一帶一路”的認知程度,對不同年齡和不同職業的人舉辦了一次“一帶一路”知識競賽,滿分100分(90分及以上為認知程度高).現從參賽者中抽取了
人,按年齡分成5組,第一組:
,第二組:
,第三組:
,第四組:
,第五組:
,得到如圖所示的頻率分布直方圖,已知第一組有6人.
![]()
(1)求
;
(2)求抽取的
人的年齡的中位數(結果保留整數);
(3)從該市大學生、軍人、醫務人員、工人、個體戶 五種人中用分層抽樣的方法依次抽取6人,42人,36人,24人,12人,分別記為1~5組,從這5個按年齡分的組和5個按職業分的組中每組各選派1人參加知識競賽,分別代表相應組的成績,年齡組中1~5組的成績分別為93,96,97,94,90,職業組中1~5組的成績分別為93,98,94,95,90.
(Ⅰ)分別求5個年齡組和5個職業組成績的平均數和方差;
(Ⅱ)以上述數據為依據,評價5個年齡組和5個職業組對“一帶一路”的認知程度.
科目:高中數學 來源: 題型:
【題目】某種“籠具”由內,外兩層組成,無下底面,內層和外層分別是一個圓錐和圓柱,其中圓柱與圓錐的底面周長相等,圓柱有上底面,制作時需要將圓錐的頂端剪去,剪去部分和接頭忽略不計,已知圓柱的底面周長為
,高為
,圓錐的母線長為
.
(1)求這種“籠具”的體積;
(2)現要使用一種紗網材料制作50個“籠具”,該材料的造價為每平方米8元,共需多少元?
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設
為雙曲線
:
的右焦點,過坐標原點的直線依次與雙曲線
的左、右支交于點
,若
,
,則該雙曲線的離心率為( )
A.
B.
C.
D. ![]()
【答案】B
【解析】
,設雙曲線的左焦點為
,連接
,由對稱性可知,
為矩形,且
,故
,故選B.
【 方法點睛】本題主要考查雙曲線的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個重點也是難點,一般求離心率有以下幾種情況:①直接求出
,從而求出
;②構造
的齊次式,求出
;③采用離心率的定義以及圓錐曲線的定義來求解;④根據圓錐曲線的統一定義求解.
【題型】單選題
【結束】
12
【題目】點
到點
,
及到直線
的距離都相,如果這樣的點恰好只有一個,那么實數
的值是( )
A.
B.
C.
或
D.
或![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量
,函數
的最小值為
.
(1)當
時,求
的值;
(2)求
;
(3)已知函數
為定義在上的增函數,且對任意的
都滿足
,問:是否存在這樣的實數
,使不等式
對所有
恒成立,若存在,求出
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從裝有
個不同小球的口袋中取出
個小球(
),共有
種取法。在這
種取法中,可以視作分為兩類:第一類是某指定的小球未被取到,共有
種取法;第二類是某指定的小球被取到,共有
種取法。顯然
,即有等式:
成立。試根據上述想法,下面式子
(其中
)應等于 ( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截而得,已知FA⊥平面ABC,AB=2,AF=2,BD=1,CE=3,O為BC的中點.
![]()
(1)求證:面EFD⊥面BCED;
(2)求平面DEF與平面ACEF所成銳二面角的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com