【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程與曲線
的直角坐標(biāo)方程;
(2)若
與
交于
兩點(diǎn),點(diǎn)
的極坐標(biāo)為
,求
的值.
【答案】(1)曲線
普通方程為
曲線
的直角坐標(biāo)方程為
(2)![]()
【解析】
(1)將曲線
的參數(shù)方程中的t消掉得到曲線
的普通方程,利用ρcosθ=x,ρsinθ=y,能求出C2的直角坐標(biāo)方程.
(2)將
代入
,得
,利用直線參數(shù)的幾何意義結(jié)合韋達(dá)定理,能求出
.
(1)曲線
的參數(shù)方程為
(
為參數(shù)),兩式相加消去t可得普通方程為
;又由ρcosθ=x,ρsinθ=y,
曲線
的極坐標(biāo)方程為
轉(zhuǎn)化為直角坐標(biāo)方程為![]()
(2)把曲線
的參數(shù)方程為
(
為參數(shù)),代入
得
,
設(shè)
,
是
對應(yīng)的參數(shù),則
,![]()
所以
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,
a為實(shí)數(shù)
,
求函數(shù)
的單調(diào)區(qū)間;
若存在實(shí)數(shù)a,使得
對任意
恒成立,求實(shí)數(shù)m的取值范圍.
提示:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,以
為極點(diǎn),
軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,直線
的參數(shù)方程為
為參數(shù)
,直線
與曲線
分別交于
兩點(diǎn).
(1)若點(diǎn)
的極坐標(biāo)為
,求
的值;
(2)求曲線
的內(nèi)接矩形周長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱錐D-ABC中,二面角A-BC-D的大小為90°,且∠BDC=90°,∠ABC=30°,BC=3,
.
![]()
(1)求證:AC⊥平面BCD;
(2)二面角B-AC-D為45°,且E為線段BC的中點(diǎn),求直線AE與平面ACD所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖甲所示,
是梯形
的高,
,
,
,現(xiàn)將梯形
沿
折起如圖乙所示的四棱錐
,使得
,點(diǎn)
是線段
上一動(dòng)點(diǎn).
![]()
![]()
(1)證明:
和
不可能垂直;
(2)當(dāng)
時(shí),求
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
在
處的切線方程為
,求
的值;
(2)若
為區(qū)間
上的任意實(shí)數(shù),且對任意
,總有
成立,求實(shí)數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓
:
,長軸的右端點(diǎn)與拋物線
:
的焦點(diǎn)
重合,且橢圓
的離心率是
.
![]()
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)過
作直線
交拋物線
于
,
兩點(diǎn),過
且與直線
垂直的直線交橢圓
于另一點(diǎn)
,求
面積的最小值,以及取到最小值時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)
的圖像向左平移
個(gè)單位后得到函數(shù)
的圖像,且函數(shù)
滿足
,則下列命題中正確的是()
A. 函數(shù)
圖像的兩條相鄰對稱軸之間的距離為![]()
B. 函數(shù)
圖像關(guān)于點(diǎn)
對稱
C. 函數(shù)
圖像關(guān)于直線
對稱
D. 函數(shù)
在區(qū)間
內(nèi)為單調(diào)遞減函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)
是拋物線
上的動(dòng)點(diǎn),
是
的準(zhǔn)線上的動(dòng)點(diǎn),直線
過
且與
(
為坐標(biāo)原點(diǎn))垂直,則點(diǎn)
到
的距離的最小值的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com