【題目】.(本小題滿(mǎn)分16分)
已知函數(shù)
,并設(shè)
,
(1)若
圖像在
處的切線(xiàn)方程為
,求
、
的值;
(2)若函數(shù)
是
上單調(diào)遞減,則
① 當(dāng)
時(shí),試判斷
與
的大小關(guān)系,并證明之;
② 對(duì)滿(mǎn)足題設(shè)條件的任意
、
,不等式
恒成立,求
的取值范圍
【答案】(1)因?yàn)?/span>
,所以
, …………………2分
又因?yàn)?/span>
圖像在
處的切線(xiàn)方程為
,
所以
,即
,解得
,
. ……………………………………4分
(2)①因?yàn)?/span>
是
上的單調(diào)遞減函數(shù),所以
恒成立,
即
對(duì)任意的
恒成立, ………………………………………6分
所以
,所以
,即
且
,
令
,由
,知
是減函數(shù),
故
在
內(nèi)取得最小值
,又
,
所以
時(shí),
. ……………………………………10分
② 由①知,
,當(dāng)
時(shí),
或
,
因?yàn)?/span>
,即
,解得
,
或
,所以
,
而
,
所以
或
,
不等式
等價(jià)于
,
變?yōu)?/span>
或
恒成立,
, ………………………………………………12分
當(dāng)
時(shí),
,即
,所以不等式
恒成立等價(jià)于
恒成立,等價(jià)于
, ………………………………………14分
而
,
因?yàn)?/span>
,
,所以
,所以
,所以
,
所以
,所以
. ……………………………………………………16分
【解析】略
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)引進(jìn)現(xiàn)代化管理體制,生產(chǎn)效益明顯提高.2018年全年總收入與2017年全年總收入相比增長(zhǎng)了一倍,實(shí)現(xiàn)翻番.同時(shí)該企業(yè)的各項(xiàng)運(yùn)營(yíng)成本也隨著收入的變化發(fā)生了相應(yīng)變化.下圖給出了該企業(yè)這兩年不同運(yùn)營(yíng)成本占全年總收入的比例,下列說(shuō)法正確的是( )
![]()
A.該企業(yè)2018年原材料費(fèi)用是2017年工資金額與研發(fā)費(fèi)用的和
B.該企業(yè)2018年研發(fā)費(fèi)用是2017年工資金額、原材料費(fèi)用、其它費(fèi)用三項(xiàng)的和
C.該企業(yè)2018年其它費(fèi)用是2017年工資金額的![]()
D.該企業(yè)2018年設(shè)備費(fèi)用是2017年原材料的費(fèi)用的兩倍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)![]()
(Ⅰ)討論
極值點(diǎn)的個(gè)數(shù);
(Ⅱ)若
是
的一個(gè)極值點(diǎn),且
,證明:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在①
;②
;③
這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中的橫線(xiàn)上,并解答相應(yīng)的問(wèn)題.
在
中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿(mǎn)足________________,![]()
,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,其中
.
(1)當(dāng)
時(shí),求函數(shù)
在
上的最大值和最小值;
(2)若函數(shù)
為
上的單調(diào)函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年,中華人民共和國(guó)成立70周年,為了慶祝建國(guó)70周年,某中學(xué)在全校進(jìn)行了一次愛(ài)國(guó)主義知識(shí)競(jìng)賽,共1000名學(xué)生參加,答對(duì)題數(shù)(共60題)分布如下表所示:
組別 |
|
|
|
|
|
|
頻數(shù) | 10 | 185 | 265 | 400 | 115 | 25 |
答對(duì)題數(shù)
近似服從正態(tài)分布
,
為這1000人答對(duì)題數(shù)的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表).
(1)估計(jì)答對(duì)題數(shù)在
內(nèi)的人數(shù)(精確到整數(shù)位).
(2)學(xué)校為此次參加競(jìng)賽的學(xué)生制定如下獎(jiǎng)勵(lì)方案:每名同學(xué)可以獲得2次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)所得獎(jiǎng)品的價(jià)值與對(duì)應(yīng)的概率如下表所示.
獲得獎(jiǎng)品的價(jià)值(單位:元) | 0 | 10 | 20 |
概率 |
|
|
|
用
(單位:元)表示學(xué)生甲參與抽獎(jiǎng)所得獎(jiǎng)品的價(jià)值,求
的分布列及數(shù)學(xué)期望.
附:若
,則
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(Ⅰ)若
在
內(nèi)單調(diào)遞減,求實(shí)數(shù)
的取值范圍;
(Ⅱ)若函數(shù)
有兩個(gè)極值點(diǎn)分別為
,
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
(
)的離心率為
,且經(jīng)過(guò)點(diǎn)
.
(1)求橢圓
的方程;
(2)過(guò)點(diǎn)
作直線(xiàn)
與橢圓
交于不同的兩點(diǎn)
,
,試問(wèn)在
軸上是否存在定點(diǎn)
使得直線(xiàn)
與直線(xiàn)
恰關(guān)于
軸對(duì)稱(chēng)?若存在,求出點(diǎn)
的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com