【題目】某群體的人均通勤時間,是指單日內該群體中成員從居住地到工作地的平均用時.某地上班族
中的成員僅以自駕或公交方式通勤.分析顯示:當
中
(
)的成員自駕時,自駕群體的人均通勤時間為
(單位:分鐘),而公交群體的人均通勤時間不受
影響,恒為
分鐘,試根據上述分析結果回答下列問題:
(1)當
在什么范圍內時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?
(2)求該地上班族
的人均通勤時間
的表達式;討論
的單調性,并說明其實際意義.
科目:高中數學 來源: 題型:
【題目】“若A則B”為真命題,而“若B則C”的逆否命題為真命題,且“若A則B”是“若C則D”的充分條件,而“若D則E”是“若B則C”的充要條件,則¬B是¬E的____條件;A是E的____條件.(填“充分”“必要”、“充要”或“既不充分也不必要”)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an},{bn}都是單調遞增數列,若將這兩個數列的項按由小到大的順序排成一列(相同的項視為一項),則得到一個新數列{cn}.
(1)設數列{an},{bn}分別為等差、等比數列,若a1=b1=1,a2=b3 , a6=b5 , 求c20;
(2)設{an}的首項為1,各項為正整數,bn=3n , 若新數列{cn}是等差數列,求數列{cn} 的前n項和Sn;
(3)設bn=qn﹣1(q是不小于2的正整數),c1=b1 , 是否存在等差數列{an},使得對任意的n∈N* , 在bn與bn+1之間數列{an}的項數總是bn?若存在,請給出一個滿足題意的等差數列{an};若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點
,
,點
為曲線
上任意一點且滿足![]()
(1)求曲線
的方程;
(2)設曲線
與
軸交于
兩點,點
是曲線
上異于
的任意一點,直線
分別交直線
:
于點
,試問
軸上是否存在一個定點
,使得
?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2015年12月10日, 我國科學家屠呦呦教授由于在發現青蒿素和治療瘧疾的療法上的貢獻獲得諾貝爾醫學獎,以青蒿素類藥物為主的聯合療法已經成為世界衛生組織推薦的抗瘧疾標準療法,目前,國內青蒿人工種植發展迅速,調查表明,人工種植的青蒿的長勢與海拔高度、土壤酸堿度、空氣濕度的指標有極強的相關性,現將這三項的指標分別記為
,并對它們進行量化:0表示不合格,1表示臨界合格,2表示合格,再用綜合指標
的值評定人工種植的青蒿的長勢等級:若
,則長勢為一級;若
,則長勢為二級;若
,則長勢為三級;為了了解目前人工種植的青蒿的長勢情況,研究人員隨機抽取了10塊青蒿人工種植地,得到如下結果:
種植地編號 |
|
|
|
|
|
|
|
|
|
|
|
種植地編號 |
|
|
|
|
|
|
|
|
|
|
|
(1)在這10塊青蒿人工種植地中任取兩地,求這兩地的空氣濕度的指標
相同的概率;
(2)從長勢等級是一級的人工種植地中任取一地,其綜合指標為
,從長勢等級不是一級的人工種植地中任取一地,其綜合指標為
,記隨機變量
,求
的分布列及其數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數
是定義為R的偶函數,且
對任意的
,都有
且當
時,
,若在區間
內關于
的方程
恰好有3個不同的實數根,則
的取值范圍是 ( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某教育主管部門到一所中學檢查學生的體質健康情況.從全體學生中,隨機抽取12名進行體質健康測試,測試成績(百分制)以莖葉圖形式表示如圖所示.根據學生體質健康標準,成績不低于76的為優良. ![]()
(1)寫出這組數據的眾數和中位數;
(2)將頻率視為概率.根據樣本估計總體的思想,在該校學生中任選3人進行體質健康測試,求至少有1人成績是“優良”的概率;
(3)從抽取的12人中隨機選取3人,記ξ表示成績“優良”的學生人數,求ξ的分布列及期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和Sn=
﹣
(n∈N*).
(1)求數列{an}的通項公式;
(2)若bn=anlog3an , 求數列{bn}的前n項和.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com