(本大題13分)已知函數(shù)
(
為常數(shù))
(1)若
在區(qū)間
上單調(diào)遞減,求
的取值范圍;
(2)若
與直線
相切:
(ⅰ)求
的值;
(ⅱ)設(shè)
在
處取得極值,記點(diǎn)M (
,
),N(
,
),P(
),
, 若對(duì)任意的m
(
, x
),線段MP與曲線f(x)均有異于M,P的公共點(diǎn),試確定
的最小值,并證明你的結(jié)論.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分16分)已知函數(shù)
為實(shí)常數(shù)).
(I)當(dāng)
時(shí),求函數(shù)
在
上的最小值;
(Ⅱ)若方程
在區(qū)間
上有解,求實(shí)數(shù)
的取值范圍;
(Ⅲ)證明:![]()
(參考數(shù)據(jù):
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
設(shè)函數(shù)![]()
(1)求函數(shù)
極值;
(2)當(dāng)
恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù)
,其中
.
(Ⅰ)若
是
的極值點(diǎn),求
的值;
(Ⅱ)求
的單調(diào)區(qū)間;
(Ⅲ)若
在
上的最大值是
,求
的取值范圍 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知
函數(shù)![]()
(Ⅰ)求
的最小值;
(Ⅱ)若
在
上為單調(diào)增函數(shù),求實(shí)數(shù)
的取值范圍;
(Ⅲ)證明:
…
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù)![]()
.
(Ⅰ)若
,求曲線
在
處切線的斜率;
(Ⅱ)求
的單調(diào)區(qū)間;
(Ⅲ)設(shè)
,若對(duì)任意
,均存在
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
在
與
時(shí)都取得極值
(1)求
的值與函數(shù)
的單調(diào)區(qū)間
(2)若對(duì)
,不等式
恒成立,求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(x∈R).
(1)求函數(shù)
的單調(diào)區(qū)間和極值;
(2)已知函數(shù)
的圖象與函數(shù)
的圖象關(guān)于直線x=1對(duì)稱,證明當(dāng)x>1時(shí),
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已
知二次函數(shù)
的圖象經(jīng)過點(diǎn)
、
與點(diǎn)
,設(shè)函數(shù)
在
和
處取到極值,其中
,
。
(1)求
的二次項(xiàng)系數(shù)
的值;
(2)比較
的大小(要求按從小到大排列);
(3)若
,且過原點(diǎn)存在兩條互相垂直的直線與曲線
均相切,求
。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com