【題目】已知函數(shù)
,
.
(1)若
,求實(shí)數(shù)
的取值范圍;
(2)設(shè)函數(shù)
的極大值為
,極小值為
,求
的取值范圍.
【答案】(1)
; (2)
.
【解析】
(1)根據(jù)題意轉(zhuǎn)化為
的最小值小于等于9,二次函數(shù)根據(jù)軸與區(qū)間的關(guān)系進(jìn)行分類討論,得到答案.(2)利用導(dǎo)數(shù)求出
的極小值
和極大值
,并且得到
的關(guān)系,以及
與
的關(guān)系,表示出
消去
,然后令
,將
轉(zhuǎn)化成關(guān)于
的函數(shù),注意
的取值范圍,從而求出
的范圍.
(1)因?yàn)?/span>
,
所以函數(shù)
的最小值小于等于9.
(i)函數(shù)
的對(duì)稱軸為
,當(dāng)
,即
時(shí),
由
,得
,
因?yàn)?/span>
,所以
;
(ii)當(dāng)
,即
時(shí),
由
,得
.
綜上,實(shí)數(shù)
的取值范圍為
.
(2)因?yàn)?/span>
,所以
.
設(shè)
,因?yàn)?/span>
,
所以函數(shù)
有兩個(gè)不同的零點(diǎn),不妨設(shè)為
,
,且
,
則
,
.
當(dāng)
時(shí),
,函數(shù)
為單調(diào)遞減函數(shù);
當(dāng)
時(shí),
,函數(shù)
為單調(diào)遞增函數(shù);
當(dāng)
時(shí),
,函數(shù)
為單調(diào)遞減函數(shù).
所以當(dāng)
時(shí),函數(shù)
取得極小值,當(dāng)
時(shí),函數(shù)
取得極大值,
所以
,
又
,
,所以
.
將
代入
,得
,
設(shè)
,則
,
所以
.
設(shè)
,
,則
,
所以函數(shù)
在
上為單調(diào)減函數(shù),
從而
,
又
,當(dāng)
時(shí),
,所以
,
即
.
故
的取值范圍為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】影響消費(fèi)水平的原因很多,其中重要的一項(xiàng)是工資收入.研究這兩個(gè)變量的關(guān)系的一個(gè)方法是通過隨機(jī)抽樣的方法,在一定范圍內(nèi)收集被調(diào)查者的工資收入和他們的消費(fèi)狀況.下面的數(shù)據(jù)是某機(jī)構(gòu)收集的某一年內(nèi)上海、江蘇、浙江、安徽、福建五個(gè)地區(qū)的職工平均工資與城鎮(zhèn)居民消費(fèi)水平(單位:萬元).
地區(qū) | 上海 | 江蘇 | 浙江 | 安徽 | 福建 |
職工平均工資 | 9.8 | 6.9 | 6.4 | 6.2 | 5.6 |
城鎮(zhèn)居民消費(fèi)水平 | 6.6 | 4.6 | 4.4 | 3.9 | 3.8 |
(1)利用江蘇、浙江、安徽三個(gè)地區(qū)的職工平均工資和他們的消費(fèi)水平,求出線性回歸方程
,其中![]()
,
;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過1萬,則認(rèn)為得到的線性回歸方程是可靠的,試問所得的線性回歸方程是否可靠?(
的結(jié)果保留兩位小數(shù))
(參考數(shù)據(jù):
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著社會(huì)的進(jìn)步,經(jīng)濟(jì)的發(fā)展,道路上的汽車越來越多,隨之而來的交通事故也增多.據(jù)有關(guān)部門調(diào)查,發(fā)生車禍的駕駛員中尤其是21 歲以下年輕人所占比例居高,因此交通管理有關(guān)部門,對(duì)2018 年參加駕照考試的21 歲以下學(xué)員隨機(jī)抽取10 名學(xué)員,對(duì)他們參加的科目三(道路駕駛)和科目四(安全文明駕駛相關(guān)知識(shí))進(jìn)行兩輪現(xiàn)場(chǎng)測(cè)試,并把兩輪測(cè)試成績(jī)的平均分作為該名學(xué)員的抽測(cè)成績(jī).記錄的數(shù)據(jù)如下:
![]()
(1)從2018年參加駕照考試的21歲以下學(xué)員中隨機(jī)選取一名學(xué)員,試估計(jì)這名學(xué)員抽測(cè)成績(jī)大于或等于90分的概率;
(2)根據(jù)規(guī)定,科目三和科目四測(cè)試成績(jī)均達(dá)到90分以上(含90)才算測(cè)試合格.
(i)從抽測(cè)的1號(hào)至5號(hào)學(xué)員中任取兩名學(xué)員,記
為學(xué)員測(cè)試合格的人數(shù),求
的分布列和數(shù)學(xué)期望
;
(ii) 記抽取的10名學(xué)員科目三和科目四測(cè)試成績(jī)的方差分別為
,
,試比較
與
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信運(yùn)動(dòng)是由騰訊開發(fā)的一個(gè)類似計(jì)步數(shù)據(jù)庫(kù)的公眾賬號(hào),很多手機(jī)用戶加入微信運(yùn)動(dòng)后,為了讓自己的步數(shù)能領(lǐng)先于朋友,運(yùn)動(dòng)的積極性明顯增強(qiáng).微信運(yùn)動(dòng)公眾號(hào)為了解用戶的一些情況,在微信運(yùn)動(dòng)用戶中隨機(jī)抽取了100名用戶,統(tǒng)計(jì)了他們某一天的步數(shù),數(shù)據(jù)整理如下:
|
|
|
|
|
|
|
|
| 5 | 20 | 50 | 18 | 3 | 3 | 1 |
(Ⅰ)根據(jù)表中數(shù)據(jù),在如圖所示的坐標(biāo)平面中作出其頻率分布直方圖,并在縱軸上標(biāo)明各小長(zhǎng)方形的高;
(Ⅱ)若視頻率分布為概率分布,在微信運(yùn)動(dòng)用戶中隨機(jī)抽取3人,求至少2人步數(shù)多于1.2萬步的概率;
(Ⅲ)若視頻率分布為概率分布,在微信運(yùn)動(dòng)用戶中隨機(jī)抽取2人,其中每日走路不超過0.8萬步的有
人,超過1.2萬步的有
人,設(shè)
,求的分布列及數(shù)學(xué)期望.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底面
為矩形,側(cè)面
底面
,
為棱
的中點(diǎn),
為棱
上任意一點(diǎn),且不與
點(diǎn)、
點(diǎn)重合.
.
![]()
(1)求證:平面
平面
;
(2)是否存在點(diǎn)
使得平面
與平面
所成的角的余弦值為
?若存在,求出點(diǎn)
的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以原點(diǎn)
為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程和
的直角坐標(biāo)方程;
(2)已知曲線
的極坐標(biāo)方程為
,
,
,點(diǎn)
是曲線
與
的交點(diǎn),點(diǎn)
是曲線
與
的交點(diǎn),且
,
均異于原點(diǎn)
,且
,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
某學(xué)校高一數(shù)學(xué)興趣小組對(duì)學(xué)生每周平均體育鍛煉小時(shí)數(shù)與體育成績(jī)優(yōu)秀(體育成績(jī)滿分100分,不低于85分稱優(yōu)秀)人數(shù)之間的關(guān)系進(jìn)行分析研究,他們從本校初二,初三,高一,高二,高三年級(jí)各隨機(jī)抽取了40名學(xué)生,記錄并整理了這些學(xué)生周平均體育鍛煉小時(shí)數(shù)與體育成績(jī)優(yōu)秀人數(shù),得到如下數(shù)據(jù)表:
初二 | 初三 | 高一 | 高二 | 高三 | |
周平均體育鍛煉小時(shí)數(shù)工(單位:小時(shí)) | 14 | 11 | 13 | 12 | 9 |
體育成績(jī)優(yōu)秀人數(shù)y(單位:人) | 35 | 26 | 32 | 26 | 19 |
該興趣小組確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)若選取的是初三,高一,高二的3組數(shù)據(jù),請(qǐng)根據(jù)這3組數(shù)據(jù),求出y關(guān)于x的線性回歸方程
;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差均不超過1,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得到的線性回歸方程是否可靠?
參考數(shù)據(jù):
,
.
參考公式:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)偶函數(shù)
和奇函數(shù)
的圖象如圖所示,集合A
與集合B
的元素個(gè)數(shù)分別為a,b,若
,則a+b的值不可能是( )
![]()
A. 12B. 13C. 14D. 15
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com