【題目】設樣本數(shù)據(jù)x1 , x2 , …,x2017的方差是4,若yi=2xi﹣1(i=1,2,…,2017),則y1 , y2 , …y2017的方差為 .
【答案】16
【解析】解:根據(jù)題意,設樣本數(shù)據(jù)x1 , x2 , …,x2017的平均數(shù)為
, 又由其方差為4,則有
=
[(x1﹣
)2+(x2﹣
)2+(x3﹣
)2+…+(x2017﹣
)2]=4,
對于數(shù)據(jù)yi=2xi﹣1(i=1,2,…,2017),
其平均數(shù)
=(y1+y2+…+y2017)=[(2x1﹣1)+(2x2﹣1)+…+(2x2017﹣1)]=2
﹣1,
其方差
=
[(y1﹣
)2+(y2﹣
)2+(y3﹣
)2+…+(y2017﹣
)2]
=
[(x1﹣
)2+(x2﹣
)2+(x3﹣
)2+…+(x2017﹣
)2]=16,
故答案為:16.
根據(jù)題意,設數(shù)據(jù)x1 , x2 , …,x2017的平均數(shù)為
,由方差公式可得
=
[(x1﹣
)2+(x2﹣
)2+(x3﹣
)2+…+(x2017﹣
)2]=4,進而對于數(shù)據(jù)yi=2xi﹣1,可以求出其平均數(shù),進而由方差公式計算可得答案.
科目:高中數(shù)學 來源: 題型:
【題目】以下三個關于圓錐曲線的命題中:
①設
為兩個定點,
為非零常數(shù),若
,則動點
的軌跡是雙曲線;
②方程
的兩根可分別作為橢圓和雙曲線的離心率;
③雙曲線
與橢圓
有相同的焦點;
④已知拋物線
,以過焦點的一條弦
為直徑作圓,則此圓與準線相切,其中真命題為__________.(寫出所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設圓
的圓心在
軸上,并且過
兩點.
(1)求圓
的方程;
(2)設直線
與圓
交于
兩點,那么以
為直徑的圓能否經(jīng)過原點,若能,請求出直線
的方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種.若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為a元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
A1 | 上一個年度未發(fā)生有責任道路交通事故 | 下浮10% |
A2 | 上兩個年度未發(fā)生有責任道路交通事故 | 下浮20% |
A3 | 上三個及以上年度未發(fā)生有責任道路交通事故 | 下浮30% |
A4 | 上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故 | 0% |
A5 | 上一個年度發(fā)生兩次及兩次以上有責任道路交通事故 | 上浮10% |
A6 | 上一個年度發(fā)生有責任道路交通死亡事故 | 上浮30% |
某機構為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
類型 | A1 | A2 | A3 | A4 | A5 | A6 |
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(Ⅰ)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規(guī)定a=950.記X為某同學家的一輛該品牌車在第四年續(xù)保時的費用,求X的分布列與數(shù)學期望值;(數(shù)學期望值保留到個位數(shù)字)
(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設購進一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣
.
(1)若函數(shù)f(x)在定義域內(nèi)不單調(diào),求實數(shù)a的取值范圍;
(2)若函數(shù)f(x)在區(qū)間(0,1]內(nèi)單調(diào)遞增,求實數(shù)a的取值范圍;
(3)若x1、x2∈R+ , 且x1≤x2 , 求證:(lnx1﹣lnx2)(x1+2x2)≤3(x1﹣x2).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
:
的左右焦點分別為
、
,上頂點為B,O為坐標原點,且向量
與
的夾角為
.
求橢圓
的方程;
設
,點P是橢圓
上的動點,求
的最大值和最小值;
設不經(jīng)過點B的直線l與橢圓
相交于M、N兩點,且直線BM、BN的斜率之和為1,證明:直線l過定點.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com