【題目】已知橢圓
的右焦點為F,設直線l:x=5與x軸的交點為E,過點F且斜率為k的直線l1與橢圓交于A,B兩點,M為線段EF的中點.
(I)若直線l1的傾斜角為
,求△ABM的面積S的值;
(Ⅱ)過點B作直線BN⊥l于點N,證明:A,M,N三點共線.
【答案】解:(I)由題意可知:右焦點F(1,0),E(5,0),M(3,0),
設A(x1 , y1),B(x2 , y2),
由直線l1的傾斜角為
,則k=1,
直線l1的方程y=x﹣1,即x=y+1,
則
,整理得:9x2+8﹣16=0.
則y1+y2=﹣
,y1y2=﹣
,
△ABM的面積S,S=
丨FM丨丨y1﹣y2丨=丨y1﹣y2丨=
=
,
∴△ABM的面積S的值
;
(Ⅱ)證明:設直線l1的方程為y=k(x﹣1),
則
,整理得:(4+5k2)x2﹣10k2x+5k2﹣20=0.
則x1+x2=
,x1x2=
,
直線BN⊥l于點N,則N(5,y2),
由kAM=
,kMN=
,
而y2(3﹣x1)﹣2(﹣y1)=k(x2﹣1)(3﹣x1)+2k(x1﹣1)=﹣k[x1x2﹣3(x1+x2)+5],
=﹣k(
﹣3×
+5),
=0,
∴kAM=kMN ,
∴A,M,N三點共線.
【解析】(I)由題意,直線l1的x=y+1,代入橢圓方程,由韋達定理,弦長公式即可求得△ABM的面積S的值;(Ⅱ)直線y=k(x﹣1),代入橢圓方程,由韋達定理,利用直線的斜率公式,即可求得kAM=kMN , A,M,N三點共線.
【考點精析】通過靈活運用橢圓的標準方程,掌握橢圓標準方程焦點在x軸:
,焦點在y軸:
即可以解答此題.
科目:高中數學 來源: 題型:
【題目】已知一次函數f(x)=ax-2.
(1)當a=3時,解不等式|f(x)|<4;
(2)解關于x的不等式|f(x)|<4;
(3)若關于x的不等式|f(x)|≤3對任意x∈[0,1]恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,小明想將短軸長為2,長軸長為4的一個半橢圓形紙片剪成等腰梯形ABDE,且梯形ABDE內接于半橢圓,DE∥AB,AB為短軸,OC為長半軸
(1)求梯形ABDE上底邊DE與高OH長的關系式;
(2)若半橢圓上到H的距離最小的點恰好為C點,求底邊DE的取值范圍
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,設
為不同的兩點,直線
的方程為
,設
,其中
均為實數.下列四個說法中:
①存在實數
,使點
在直線
上;
②若
,則過
兩點的直線與直線
重合;
③若
,則直線
經過線段
的中點;
④若
,則點
在直線
的同側,且直線
與線段
的延長線相交.
所有結論正確的說法的序號是______________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】張三同學從7歲起到13歲每年生日時對自己的身高測量后記錄如表:
年齡 (歲) | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
身高 (cm) | 121 | 128 | 135 | 141 | 148 | 154 | 160 |
(Ⅰ)求身高y關于年齡x的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的線性回歸方程,分析張三同學7歲至13歲身高的變化情況,如17歲之前都符合這一變化,請預測張三同學15歲時的身高.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
=
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對某校高一年級學生參加社區服務次數進行統計,隨機抽取M名學生作為樣本,得到這M名學生參加社區服務的次數.根據此數據作出了頻數與頻率的統計表和頻率分布直方圖如下:
分組 | 頻數 | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 25 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計 | M | 1 |
![]()
(1)求出表中M,p及圖中a的值;
(2)若該校高一學生有360人,試估計該校高一學生參加社區服務的次數在區間[15,20)內的人數;
(3)在所取樣本中,從參加社區服務的次數不少于20次的學生中任選2人,請列舉出所有基本事件,并求至多1人參加社區服務次數在區間[20,25)內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以下三個關于圓錐曲線的命題中:
①設
為兩個定點,
為非零常數,若
,則動點
的軌跡是雙曲線;
②方程
的兩根可分別作為橢圓和雙曲線的離心率;
③雙曲線
與橢圓
有相同的焦點;
④已知拋物線
,以過焦點的一條弦
為直徑作圓,則此圓與準線相切,其中真命題為__________.(寫出所有真命題的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種.若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為a元,在下一年續保時,實行的是費率浮動機制,保費與上一年度車輛發生道路交通事故的情況相聯系,發生交通事故的次數越多,費率也就越高,具體浮動情況如表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
A1 | 上一個年度未發生有責任道路交通事故 | 下浮10% |
A2 | 上兩個年度未發生有責任道路交通事故 | 下浮20% |
A3 | 上三個及以上年度未發生有責任道路交通事故 | 下浮30% |
A4 | 上一個年度發生一次有責任不涉及死亡的道路交通事故 | 0% |
A5 | 上一個年度發生兩次及兩次以上有責任道路交通事故 | 上浮10% |
A6 | 上一個年度發生有責任道路交通死亡事故 | 上浮30% |
某機構為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續保時的情況,統計得到了下面的表格:
類型 | A1 | A2 | A3 | A4 | A5 | A6 |
數量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(Ⅰ)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規定a=950.記X為某同學家的一輛該品牌車在第四年續保時的費用,求X的分布列與數學期望值;(數學期望值保留到個位數字)
(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設購進一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com