.(本題滿分15分)已知
為常數(shù),函數(shù)
(
)。
(Ⅰ)
若函數(shù)
在區(qū)間(-2,-1)上為減函數(shù),求實數(shù)
的取值范圍;
(Ⅱ).設(shè)
記函數(shù)
,已知函數(shù)
在區(qū)間
內(nèi)有兩個極值點
,且
,若對于滿足條件的任意實數(shù)
都有
(
為正整數(shù)),求
的最小值。
(Ⅰ)
的取值范圍是
; (Ⅱ)
的最小值為2。
【解析】 本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運用,根據(jù)已知中的函數(shù)求解導(dǎo)數(shù),根據(jù)單調(diào)性確定參數(shù)的范圍,以及極值的問題的綜合運用。
(1)
…….1分
![]()
,解得![]()
……4分
![]()
分類討論的得到結(jié)論。
(2)![]()
![]()
在區(qū)間
內(nèi)有兩個極值點
,
,
,只要
,解得
,![]()
,然后分析得到。
解(Ⅰ)
…….1分
![]()
,解得
,……..3分
……4分
![]()
,
5分
綜合上得,
的取值范圍是
….7分
(Ⅱ)
![]()
![]()
在區(qū)間
內(nèi)有兩個極值點
,
,
,只要
,解得
,![]()
…..9分
![]()
,![]()
![]()
,![]()
,……11分
![]()
,設(shè)![]()
![]()
,
……..13分
又因存在
,
,此時![]()
的最小值為2。…….15分(未舉例說明
扣1分)
科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省如皋市五校高二下學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題
((本題滿分15分)
某有獎銷售將商品的售價提高120元后允許顧客有3次抽獎的機會,每次抽獎的方法是在已經(jīng)設(shè)置并打開了程序的電腦上按“Enter”鍵,電腦將隨機產(chǎn)生一個 1~6的整數(shù)數(shù)作為號碼,若該號碼是3的倍數(shù)則顧客獲獎,每次中獎的獎金為100元,運用所學(xué)的知識說明這樣的活動對商家是否有利。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省招生適應(yīng)性考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分15分)設(shè)函數(shù)
.
(Ⅰ)若函數(shù)
在
上單調(diào)遞增,在
上單調(diào)遞減,求實數(shù)
的最大值;
(Ⅱ)若
對任意的
,
都成立,求實數(shù)
的取值范圍.
注:
為自然對數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省溫州市十校聯(lián)合體高三上學(xué)期期初摸底文科數(shù)學(xué) 題型:解答題
(本題滿分15分)已知直線
與曲線
相切
1)求b的值;
2)若方程
在
上恰有兩個不等的實數(shù)根
,求
①m的取值范圍;
②比較
的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省溫州市十校聯(lián)合體高三上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題
(本題滿分15分)已知拋物線
:
(
),焦點為
,直線
交拋物線
于
、
兩點,
是線段
的中點,
過
作
軸的垂線交拋物線
于點
,
(1)若拋物線
上有一點
到焦點
的距離為
,求此時
的值;
(2)是否存在實數(shù)
,使
是以
為直角頂點的直角三角形?若存在,求出
的值;若不存在,說明理由。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省六校高三第一次聯(lián)考文科數(shù)學(xué) 題型:解答題
(本題滿分15分)
已知函數(shù)![]()
(1)求
的單調(diào)區(qū)間;
(2)設(shè)
,若
在
上不單調(diào)且僅在
處取得最大值,求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com