【題目】已知函數(shù)
,
,若存在
,使得
成立,則
的最小值為( )
A.
B.
C.![]()
D.![]()
【答案】D
【解析】
利用導數(shù)分析函數(shù)f(x)的單調(diào)性,并可知在x∈(0,1)時,f(x)<0,再轉(zhuǎn)化函數(shù)
,即將已知條件等價轉(zhuǎn)化為
且
,即可表示
,從而整理出
,最后構(gòu)造函數(shù)
,利用導數(shù)求其最小值即可.
函數(shù)f(x)的定義域為(0,+∞),
,
∴當x∈(0,e)時,f′(x)>0,f(x)單調(diào)遞增,當x∈(e,+∞)時,f′(x)<0,f(x)單調(diào)遞減,又f(1)=0,所以x∈(0,1)時,f(x)<0;
同時
,若存在
,使得
成立,
則
且
,所以
,即x2=lnx1,又
所以
,
故
,令
,k<0,則
,
令
,解得
,令
,解得
,
∴
在(﹣∞,﹣3)單調(diào)遞減,在(﹣3,0)單調(diào)遞增,
∴
.
故選:D
科目:高中數(shù)學 來源: 題型:
【題目】學校藝術節(jié)對
四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學對這四件參賽作品預測如下:
甲說:“是
或
作品獲得一等獎”; 乙說:“
作品獲得一等獎”;
丙說:“
兩件作品未獲得一等獎”; 丁說:“是
作品獲得一等獎”.
評獎揭曉后,發(fā)現(xiàn)這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是_________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班主任對全班50名學生進行了作業(yè)量多少的調(diào)查,喜歡玩電腦游戲的同學認為作業(yè)多的有18人,認為作業(yè)不多的有9人,不喜歡玩電腦游戲的同學認為作業(yè)多的有8人,認為作業(yè)不多的有15人,則認為喜歡玩電腦游戲與認為作業(yè)量的多少有關系的把握大約是多少?
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】微信是騰訊公司推出的一種手機通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為子調(diào)查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機采訪男性、女性用戶各50名,將男性、女性使用微信的時間分成5組:
,
,
,
,
分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
![]()
(1)根據(jù)女性頻率分布直方圖估計女性使用微信的平均時間;
(2)若每天再微信超過4個小時的用戶列為“微信控”,否則稱其為“非微信控”,請你根據(jù)已知條件完成
的列聯(lián)表,并判斷是否有90%的把握認為“微信控”與“性別有關”?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)
,
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)當
時,討論函數(shù)
與
圖象的交點個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知
,
分別為橢圓
的左、右焦點,點
在橢圓上,且
軸,
的周長為6.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點
的直線與橢圓
交于
,
兩點,設
為坐標原點,是否存在常數(shù)
,使得
恒成立?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列
,
滿足下列條件:①
,
;②當
時,
滿足:
時,
,
;
時,
,
.
(1)若
,
,求
和
的值,并猜想數(shù)列
可能的通項公式(不需證明);
(2)若
,
,
是滿足
的最大整數(shù),求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位為促進職工業(yè)務技能提升,對該單位120名職工進行一次業(yè)務技能測試,測試項目共5項.現(xiàn)從中隨機抽取了10名職工的測試結(jié)果,將它們編號后得到它們的統(tǒng)計結(jié)果如下表(表1)所示(“√”表示測試合格,“×”表示測試不合格).
表1:
編號\測試項目 | 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
規(guī)定:每項測試合格得5分,不合格得0分.
(1)以抽取的這10名職工合格項的項數(shù)的頻率代替每名職工合格項的項數(shù)的概率.
①設抽取的這10名職工中,每名職工測試合格的項數(shù)為
,根據(jù)上面的測試結(jié)果統(tǒng)計表,列出
的分布列,并估計這120名職工的平均得分;
②假設各名職工的各項測試結(jié)果相互獨立,某科室有5名職工,求這5名職工中至少有4人得分不少于20分的概率;
(2)已知在測試中,測試難度的計算公式為
,其中
為第
項測試難度,
為第
項合格的人數(shù),
為參加測試的總?cè)藬?shù).已知抽取的這10名職工每項測試合格人數(shù)及相應的實測難度如下表(表2):
表2:
測試項目 | 1 | 2 | 3 | 4 | 5 |
實測合格人數(shù) | 8 | 8 | 7 | 7 | 2 |
定義統(tǒng)計量
,其中
為第
項的實測難度,
為第
項的預測難度(
).規(guī)定:若
,則稱該次測試的難度預測合理,否則為不合理,測試前,預估了每個預測項目的難度,如下表(表3)所示:
表3:
測試項目 | 1 | 2 | 3 | 4 | 5 |
預測前預估難度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
判斷本次測試的難度預估是否合理.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠今年1月、2月、3月生產(chǎn)某產(chǎn)品分別為1萬件、1.2萬件、1.3萬件,為了估計以后每月的產(chǎn)量,以這三個月的產(chǎn)量為依據(jù),用一個函數(shù)模擬該產(chǎn)品的月產(chǎn)量,
與月份
的關系,模擬函數(shù)可以選用二次函數(shù)或函數(shù)
、
、
為常數(shù))已知四月份該產(chǎn)品的產(chǎn)量為1.37萬件,請問用以上哪個函數(shù)作模擬函數(shù)較好?說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com