【題目】如圖,已知四棱錐
的底面
是菱形,
,
,
為
邊的中點(diǎn),點(diǎn)
在線段
上.
![]()
(1)證明:平面
平面
;
(2)若
,
平面
,求四棱錐
的體積.
【答案】(1)證明見(jiàn)解析;(2)
.
【解析】
試題(1)由面面垂直的判定定理可知要證平面![]()
平面
需證直線與平面垂直,經(jīng)過(guò)觀察可知要證
平面
,進(jìn)而可轉(zhuǎn)化為證明兩條直線與
;(2)四棱錐
的體積分兩部分:一是點(diǎn)
到平面
的距離:可轉(zhuǎn)化成點(diǎn)
到平面
的距離,由已知條件可得
平面
,容易得出
的大小;一是
的面積:容易知道
的面積為
的
,由此可得棱錐的體積.
試題解析:(1)證明:連接
,因?yàn)榈酌?/span>
是菱形,
,
所以
是正三角形,
因?yàn)?/span>
為
邊的中點(diǎn),
,
所以
,
,
,
所以
平面
,
因?yàn)?/span>
平面
,
所以平面![]()
平面
.
![]()
(2)連接
,交
于點(diǎn)
,連接
,
因?yàn)?/span>
∥平面
,所以
∥
,
易知點(diǎn)
為
的重心,所以
,
故
,
因?yàn)?/span>
,
, 所以
,
,因?yàn)?/span>
,
所以
,即
,且
,所以
平面
,
由
知
,故點(diǎn)
到平面
的距離為
,
因?yàn)?/span>![]()
,
所以四棱錐
的體積為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的離心率為
,左頂點(diǎn)為A,右焦點(diǎn)為F,且|AF|=3.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)F做互相垂直的兩條直線l1,l2分別交直線l:x=4于M,N兩點(diǎn),直線AM,AN分別交橢圓于P,Q兩點(diǎn),求證:P,F(xiàn),Q三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)討論
的單調(diào)性;
(2)若
恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列
滿足
,
(
是自然對(duì)數(shù)的底數(shù)),且
,令
(
).
(1)證明:
;
(2)證明:
是等比數(shù)列,且
的通項(xiàng)公式是
;
(3)是否存在常數(shù)
,對(duì)任意自然數(shù)
均有
成立?若存在,求
的取值范圍,否則,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)直線
與拋物線
交于
,
兩點(diǎn),與橢圓
交于
,
兩點(diǎn),直線
,
,
,
(
為坐標(biāo)原點(diǎn))的斜率分別為
,
,
,
,若
.
(1)是否存在實(shí)數(shù)
,滿足
,并說(shuō)明理由;
(2)求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某醫(yī)學(xué)院欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,該院派出研究小組分別到氣象局與某醫(yī)院,抄錄了1到6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到數(shù)據(jù)資料見(jiàn)表:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
晝夜溫差(℃) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)(個(gè)) | 23 | 26 | 30 | 27 | 17 | 13 |
該研究小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是相鄰的兩個(gè)月的概率;
(2)已知選取的是1月與6月的兩組數(shù)據(jù).
(i)請(qǐng)根據(jù)2到5月份的數(shù)據(jù),求就診人數(shù)y關(guān)于晝夜溫差x的線性回歸方程:
(ii)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該研究小組所得的線性回歸方程是否理想?
(參考公式
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)
處,極軸與
軸的正半軸重合,且長(zhǎng)度單位相同;曲線
的方程是
,直線
的參數(shù)方程為
(
為參數(shù),
),設(shè)
, 直線
與曲線
交于
兩點(diǎn).
(1)當(dāng)
時(shí),求
的長(zhǎng)度;
(2)求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】梯形
中,
,
,
,
,過(guò)點(diǎn)
作
,交
于
(如圖1).現(xiàn)沿
將
折起,使得
,得四棱錐
(如圖2).
![]()
(1)求證:平面
平面
;
(2)若
為
的中點(diǎn),求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
有兩個(gè)零點(diǎn)
.
(1)求
的取值范圍;
(2)記
的極值點(diǎn)為
,求證:
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com