【題目】AB是圓O的直徑,點C是圓O上異于AB的動點,過動點C的直線VC垂直于圓O所在平面,D,E分別是VA,VC的中點.
(1)判斷直線DE與平面VBC的位置關系,并說明理由;
(2)當△VAB為邊長為
的正三角形時,求四面體V﹣DEB的體積.
【答案】(1)
⊥平面
,理由見解析(2)![]()
![]()
【解析】
(1)由已知可得AC⊥BC,AC⊥VC,可證AC⊥平面VBC,D,E分別是VA,VC的中點,有DE∥AC,即可證明結論;
(2)由已知可證△VBC≌△VAC,得到BC=AC,進而求出BC,AC,VC值,利用等體積法有
,即可求解.
(1)DE⊥平面VBC,證明如下:
∵AB是圓O的直徑,點C是圓O上異于AB的動點,
∴AC⊥BC,∵過動點C的直線VC垂直于圓O所在平面,
AC平面ABC,∴AC⊥VC,∵BC∩VC=C,
∴AC⊥平面VBC,∵D,E分別是VA,VC的中點,
∴DE∥AC,∴DE⊥平面VBC.
(2)∵△VAB為邊長為
的正三角形,
AB是圓O的直徑,點C是圓O上異于AB的動點,
過動點C的直線VC垂直于圓O所在平面,
D,E分別是VA,VC的中點,∴△VBC≌△VAC,∴BC=AC,∴BC2+AC2=AB2=8.∴AC=BC=2,![]()
D,E分別是VA,VC的中點,∴DE=
=1,
∴四面體V﹣DEB的體積為: ![]()
=
.
![]()
科目:高中數學 來源: 題型:
【題目】下列命題為真命題的序號是__________.
①“若
則
”是真命題.
②“若
則
”的逆命題是真命題.
③
,“
”是“
”的充分不必要條件.
④“
”是“直線
與直線
互相垂直”的充要條件.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系
中,直線
過原點且傾斜角為
.以坐標原點
為極點,
軸正半軸為極軸建立坐標系,曲線
的極坐標方程為
.在平面直角坐標系
中,曲線
與曲線
關于直線
對稱.
(Ⅰ)求曲線
的極坐標方程;
(Ⅱ)若直線
過原點且傾斜角為
,設直線
與曲線
相交于
,
兩點,直線
與曲線
相交于
,
兩點,當
變化時,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐
中,底面
為平行四邊形,平面
平面
,
是邊長為4的等邊三角形,
,
是
的中點.
![]()
(1)求證:
;
(2)若直線
與平面
所成角的正弦值為
,求平面
與平面
所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=
CD=1,PD=
.
![]()
(1)若M為PA中點,求證:AC∥平面MDE;
(2)求直線PE與平面PBC所成角的正弦值.
(3)在PC上是否存在一點Q,使得平面QAD與平面PBC所成銳二面角的大小為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的離心率
,且橢圓過點
.
(1)求橢圓
的標準方程;
(2)設直線
與
交于
,
兩點,點
在
上,
是坐標原點,若
,判斷四邊形
的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中正確的序號是____________(寫出所有正確命題的序號)
(1)“
為實數”是“
為有理數”的充分不必要條件;
(2)“
”是“
”的充要條件
(3)“
”是“
”的必要不充分條件;
(4)“
,
”是“
”的充分不必要條件;
(5)
的三個內角為
.“
”是“
”的充要條件
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com