【題目】函數
的定義域為A,若
時總有
為單函數.例如,函數
=2x+1(
)是單函數.下列命題:
①函數
=
(x
R)是單函數;②若
為單函數,
且
則
;③若f:A
B為單函數,則對于任意b
B,它至多有一個原象;
④函數f(x)在某區(qū)間上具有單調性,則f(x)一定是單函數.其中的真命題是 .(寫出所有真命題的編號)
科目:高中數學 來源: 題型:
【題目】小張經營某一消費品專賣店,已知該消費品的進價為每件40元,該店每月銷售量(百件)與銷售單價x(元/件)之間的關系用下圖的一折線表示,職工每人每月工資為1000元,該店還應交付的其它費用為每月10000元.
![]()
(1)把y表示為x的函數;
(2)當銷售價為每件50元時,該店正好收支平衡(即利潤為零),求該店的職工人數;
(3)若該店只有20名職工,問銷售單價定為多少元時,該專賣店可獲得最大月利潤?(注:利潤=收入-支出)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地合作農場的果園進入盛果期,果農利用互聯網電商渠道銷售蘋果,蘋果單果直徑不同則單價不同,為了更好的銷售,現從該合作農場果園的蘋果樹上隨機摘下了50個蘋果測量其直徑,經統(tǒng)計,其單果直徑分布在區(qū)間
內(單位:
),統(tǒng)計的莖葉圖如圖所示:
![]()
(Ⅰ)按分層抽樣的方法從單果直徑落在
,
的蘋果中隨機抽取6個,則從
,
的蘋果中各抽取幾個?
(Ⅱ)從(Ⅰ)中選出的6個蘋果中隨機抽取2個,求這兩個蘋果單果直徑均在
內的概率;
(Ⅲ)以此莖葉圖中單果直徑出現的頻率代表概率,若該合作農場的果園有20萬個蘋果約5萬千克待出售,某電商提出兩種收購方案:方案
:所有蘋果均以5.5元/千克收購;方案
:按蘋果單果直徑大小分3類裝箱收購,每箱裝25個蘋果,定價收購方式為:單果直徑在
內按35元/箱收購,在
內按45元/箱收購,在
內按55元/箱收購.包裝箱與分揀裝箱費用為5元/箱(該費用由合作農場承擔).請你通過計算為該合作農場推薦收益最好的方案.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在(0,+∞)上的函數f(x),滿足f(mn)=f(m)+f(n)(m,n>0),且當x>1時,有f(x)>0.
①求證:f(
)=f(m)﹣f(n);
②求證:f(x)在(0,+∞)上是增函數;
③比較f(
)與
的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
(
)
(1)若在區(qū)間[0,1]上有最大值1和最小值-2.求a,b的值;
(2)在(1)條件下,若在區(qū)間
上,不等式f(x)
恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x﹣2|+|2x+a|,a∈R.
(1)當a=1時,解不等式f(x)≥5;
(2)若存在x0滿足f(x0)+|x0﹣2|<3,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,△ABC的角平分線AD的延長線交它的外接圓于點E. ![]()
(1)證明:△ABE∽△ADC;
(2)若△ABC的面積S=
ADAE,求∠BAC的大小.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com