【題目】某校要在一條水泥路邊安裝路燈,其中燈桿的設計如圖所示,AB為地面,CD,CE為路燈燈桿,CD⊥AB,∠DCE=
,在E處安裝路燈,且路燈的照明張角∠MEN=
.已知CD=4m,CE=2m.
![]()
(1)當M,D重合時,求路燈在路面的照明寬度MN;
(2)求此路燈在路面上的照明寬度MN的最小值.
科目:高中數學 來源: 題型:
【題目】已知圓O:x2+y2=3上的一動點M在x軸上的投影為N,點P滿足
.
(1)求動點P的軌跡C的方程;
(2)若直線l與圓O相切,且交曲線C于點A,B,試求|AB|的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某景區內有一半圓形花圃,其直徑AB為6,O是圓心,且OC⊥AB.在OC上有一座觀賞亭Q,其中∠AQC=
,.計劃在
上再建一座觀賞亭P,記∠POB=θ
.
![]()
(1)當θ=
時,求∠OPQ的大小;
(2)當∠OPQ越大時,游客在觀賞亭P處的觀賞效果越佳,求游客在觀賞亭P處的觀賞效果最佳時,角θ的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公園內有一塊以
為圓心半徑為
米的圓形區域.為豐富市民的業余文化生活,現提出如下設計方案:如圖,在圓形區域內搭建露天舞臺,舞臺為扇形
區域,其中兩個端點
,
分別在圓周上;觀眾席為梯形
內切在圓
外的區域,其中
,
,且
,
在點
的同側.為保證視聽效果,要求觀眾席內每一個觀眾到舞臺
處的距離都不超過
米.設
,
.問:對于任意
,上述設計方案是否均能符合要求?
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市2010年4月1日—4月30日對空氣污染指數的監測數據如(主要污染物為可吸入顆粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,83,82,82,64,79,86,85,75,71,49,45.
樣本頻率分布表:
分組 | 頻數 | 頻率 |
[41,51) | 2 | |
[51,61) | 1 | |
[61,71) | 4 | |
[71,81) | 6 | |
[81,91) | 10 | |
[91,101) | ||
[101,111) | 2 |
(1) 完成頻率分布表;
(2)作出頻率分布直方圖;
(3)根據國家標準,污染指數在0~50之間時,空氣質量為優:在51~100之間時,為良;在101~150之間時,為輕微污染;在151~200之間時,為輕度污染.請你依據所給數據和上述標準,對該市的空氣質量給出一個簡短評價.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,且acosC=(2b﹣c)cosA.
(1)若
3,求△ABC的面積;
(2)若∠B<∠C,求2cos2B+cos2C的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a,b,c分別為△ABC三個內角A,B,C的對邊,且acos C+
asin C-b-c=0.
![]()
(1)求A;
(2)若AD為BC邊上的中線,cos B=
,AD=
,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓
的離心率為
,右準線方程為
,
、
分別是橢圓
的左、右頂點,過右焦點
且斜率為
的直線
與橢圓
相交于
,
兩點.
![]()
(1)求橢圓
的標準方程.
(2)記
、
的面積分別為
、
,若
,求
的值;
(3)設線段
的中點為
,直線
與右準線相交于點
,記直線
、
、
的斜率分別為
、
、
,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com