【題目】已知橢圓的焦點(diǎn)坐標(biāo)為
,
,過(guò)
垂直于長(zhǎng)軸的直線交橢圓于
、
兩點(diǎn),且
.
![]()
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)
的直線
與橢圓交于不同的兩點(diǎn)
、
,則
的內(nèi)切圓的面積是否存在最大值?若存在求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)
;(2)存在,
內(nèi)切圓面積最大值是
,直線方程為
.
【解析】
(1)設(shè)橢圓方程為
=1(a>b>0),
由焦點(diǎn)坐標(biāo)可得c=1.由|PQ|=3,可得
=3.
又a2-b2=1,得a=2,b=
.故橢圓方程為
=1.
(2)設(shè)M(x1,y1),N(x2,y2),不妨令y1>0,y2<0,
設(shè)△F1MN的內(nèi)切圓的半徑R,
則△F1MN的周長(zhǎng)為4a=8,S△F1MN=
(|MN|+|F1M|+|F1N|)R=4R,
因此要使△F1MN內(nèi)切圓的面積最大,則R最大,此時(shí)S△F1MN也最大.
S△F1MN=
F1F2||y1-y2|=y1-y2,
由題知,直線l的斜率不為零,可設(shè)直線l的方程為x=my+1,
由
得(3m2+4)y2+6my-9=0,
得y1=
,y2=
,
則S△F1MN=y1-y2=
,令t=
,則t≥1,
則S△F1MN=
=
=
.令f(t)=3t+
,則f′(t)=3-
,
當(dāng)t≥1時(shí),f′(t)>0,所以f(t)在[1,+∞)上單調(diào)遞增,
有f(t)≥f(1)=4,S△F1MN≤
=3,
當(dāng)t=1,m=0時(shí),S△F1MN=3,又S△F1MN=4R,∴Rmax=![]()
這時(shí)所求內(nèi)切圓面積的最大值為
π.
故△F1MN內(nèi)切圓面積的最大值為
π,且此時(shí)直線l的方程為x=1.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4﹣4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l上兩點(diǎn)M,N的極坐標(biāo)分別為(2,0),(
),圓C的參數(shù)方程
(θ為參數(shù)).
(Ⅰ)設(shè)P為線段MN的中點(diǎn),求直線OP的平面直角坐標(biāo)方程;
(Ⅱ)判斷直線l與圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)D是函數(shù)y=f(x)定義域內(nèi)的一個(gè)區(qū)間,若存在x0∈D,使f(x0)=﹣x0 , 則稱x0是f(x)的一個(gè)“次不動(dòng)點(diǎn)”,也稱f(x)在區(qū)間D上存在次不動(dòng)點(diǎn).若函數(shù)f(x)=ax2﹣3x﹣a+
在區(qū)間[1,4]上存在次不動(dòng)點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞,0)
B.(0,
)
C.[
,+∞)
D.(﹣∞,
]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x+
|﹣|x﹣
|;
(1)作出函數(shù)f(x)的圖象;
(2)根據(jù)(1)所得圖象,填寫(xiě)下面的表格:
性質(zhì) | 定義域 | 值域 | 單調(diào)性 | 奇偶性 | 零點(diǎn) |
f(x) |
(3)關(guān)于x的方程f2(x)+m|f(x)|+n=0(m,n∈R)恰有6個(gè)不同的實(shí)數(shù)解,求n的取值范圍. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sinxcos(x﹣
)+cos2x﹣
.
(1)求函數(shù)f(x)的最大值,并寫(xiě)出f(x)取最大值x時(shí)的取值集合;
(2)若f(x0)=
,x0∈[
,
],求cos2x0的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>0且a≠1,設(shè)命題p:函數(shù)y=loga(x-1)在(1,+∞)上單調(diào)遞減,命題q:曲線y=x2+(a-2)x+4與x軸交于不同的兩點(diǎn).若“
p且q”為真命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=|x+1|+|x﹣4|﹣a.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的最小值;
(2)若f(x)≥
+1對(duì)任意的實(shí)數(shù)x恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱
中,側(cè)棱垂直于底面,
,
為
的中點(diǎn),過(guò)
的平面與
交于點(diǎn)
.
![]()
(1)求證:點(diǎn)
為
的中點(diǎn);
(2)四邊形
是什么平面圖形?說(shuō)明理由,并求其面積.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com