【題目】“一帶一路”是“絲綢之路經濟帶”和“21世紀海上絲綢之路”的簡稱,旨在積極發展我國與沿線國家經濟合作關系,共同打造政治互信、經濟融合、文化包容的命運共同體.自2013年以來,“一帶一路”建設成果顯著.下圖是2013-2017年,我國對“一帶一路”沿線國家進出口情況統計圖.下列描述錯誤的是( )
![]()
A.這五年,2013年出口額最少
B.這五年,出口總額比進口總額多
C.這五年,出口增速前四年逐年下降
D.這五年,2017年進口增速最快
【答案】C
【解析】
對于選項A:觀察五個灰色的條形圖的高低即可判斷;
對于選項B:觀察五組條形圖,對比每組灰色條形圖與黑色條形圖的高低及高低懸殊程度即可判斷;
對于選項C:從圖中知,紅色的折線圖是先上升后下降即可判斷;
對于選項D:觀察這五年所對的藍色折線圖的高低即可判斷;
對于選項A:觀察五個灰色的條形圖,可得2013年所對的灰色條形圖高度最低,所以這五年,2013年出口額最少.故選項A正確;
對于選項B:觀察五組條形圖可得,2013年出口額比進口額稍低,但2014年—2017年都是出口額高于進口額,并且2015年和2016年都是出口額明顯高于進口額,故這五年,出口總額比進口總額多.故選項B正確;
對于選項C:從圖中可知,紅色的折線圖是先上升后下降,即2013年到2014年出口增速是上升的.故選項C錯誤;
對于選項D:從圖中可知,藍色的折線圖2017年是最高的,即2017年進口增速最快.故選項D正確;
故選: C
科目:高中數學 來源: 題型:
【題目】如圖,在正三棱柱ABC-A1B1C1中,AB=AA1=2,點P,Q分別為A1B1,BC的中點.
![]()
(1)求異面直線BP與AC1所成角的余弦值;
(2)求直線CC1與平面AQC1所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三棱錐
的棱長均為6,其內有
個小球,球
與三棱錐
的四個面都相切,球
與三棱錐
的三個面和球
都相切,如此類推,…,球
與三棱錐
的三個面和球
都相切(
,且
),則球
的體積等于__________,球
的表面積等于__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系
中,直線
的參數方程為
(
為參數),在以坐標原點為極點,
軸正半軸為極軸的極坐標系中,曲線
的方程為
.
(1)求曲線
的直角坐標方程;
(2)設曲線
與直線
交于點
,點
的坐標為(3,1),求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平行六面體ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=
,∠BAD=120°.
![]()
(1)求異面直線A1B與AC1所成角的余弦值;
(2)求二面角B-A1D-A的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M為PC的中點.
![]()
(1)求異面直線AP,BM所成角的余弦值;
(2)點N在線段AD上,且AN=λ,若直線MN與平面PBC所成角的正弦值為
,求λ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某汽車美容公司為吸引顧客,推出優惠活動:對首次消費的顧客,按
/次收費,并注冊成為會員,對會員逐次消費給予相應優惠,標準如下:
消費次第 | 第 | 第 | 第 | 第 |
|
收費比率 |
|
|
|
|
|
該公司注冊的會員中沒有消費超過
次的,從注冊的會員中,隨機抽取了100位進行統計,得到統計數據如下:
消費次數 |
|
|
|
|
|
人數 |
|
|
|
|
|
假設汽車美容一次,公司成本為
元,根據所給數據,解答下列問題:
(1)某會員僅消費兩次,求這兩次消費中,公司獲得的平均利潤;
(2)以事件發生的頻率作為相應事件發生的概率,設該公司為一位會員服務的平均利潤為
元,求
的分布列和數學期望
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com