(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.
(理)對于數(shù)列
,從中選取若干項,不改變它們在原來數(shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個概念之后,打算研究首項為正整數(shù)
,公比為正整數(shù)
的無窮等比數(shù)列
的子數(shù)列問題. 為此,他任取了其中三項
.
(1) 若
成等比數(shù)列,求
之間滿足的等量關(guān)系;
(2) 他猜想:“在上述數(shù)列
中存在一個子數(shù)列
是等差數(shù)列”,為此,他研究了
與
的大小關(guān)系,請你根據(jù)該同學(xué)的研究結(jié)果來判斷上述猜想是否正確;
(3) 他又想:在首項為正整數(shù)
,公差為正整數(shù)
的無窮等差數(shù)列中是否存在成等比數(shù)列的子數(shù)列?請你就此問題寫出一個正確命題,并加以證明.
(1)
;(2)不成立;(3) 對于首項為正整數(shù)
,公差為正整數(shù)
的無窮等差數(shù)列
,總可以找到一個無窮子數(shù)列
,使得
是一個等比數(shù)列.
【解析】
試題分析:(1)由已知可得:
,
1分
則
,即有
,
3分
,化簡可得.
. 4分
(2)
,又
,
故
, 6分
由于
是正整數(shù),且
,則
,
又
是滿足
的正整數(shù),則
,
,
所以,
>
,從而上述猜想不成立.
10分
(3)命題:對于首項為正整數(shù)
,公差為正整數(shù)
的無窮等差數(shù)列
,總可以找到一個無窮子數(shù)列
,使得
是一個等比數(shù)列. 13分
此命題是真命題,下面我們給出證明.
證法一: 只要證明對任意正整數(shù)n,
都在數(shù)列{an}中.因為bn=a(1+d)n=a(1+
d+
d2+…+
dn)=a(Md+1),這里M=
+
d+…+
dn-1為正整數(shù),所以a(Md+1)=a+aMd是{an}中的第aM+1項,證畢. 18分
證法二:首項為
,公差為
(
)的等差數(shù)列為
,考慮數(shù)列
中的項: ![]()
依次取數(shù)列
中項
,
,
,則由
,可知
,并由數(shù)學(xué)歸納法可知,數(shù)列
為
的無窮等比子數(shù)列. 18分
考點:等比數(shù)列的簡單性質(zhì);數(shù)列的綜合應(yīng)用。
點評:此題考查了等差數(shù)列的性質(zhì)即通項公式,同時本題屬于新定義及結(jié)論探索性問題,這類試題的一般解法是:充分抓住已知條件,找準(zhǔn)問題的突破點,由淺入深,多角度、多側(cè)面探尋,聯(lián)系符合題設(shè)的有關(guān)知識,合理組合發(fā)現(xiàn)新結(jié)論,圍繞所探究的結(jié)論環(huán)環(huán)相扣,步步逼近發(fā)現(xiàn)規(guī)律,得出結(jié)論.熟練掌握公式及性質(zhì)是解本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分18分,第(1)小題6分,第(2)小題6分,第(3)小題6分)
若數(shù)列
滿足:
是常數(shù)),則稱數(shù)列
為二階線性遞推數(shù)列,且定義方程
為數(shù)列
的特征方程,方程的根稱為特征根; 數(shù)列
的通項公式
均可用特征根求得:
①若方程
有兩相異實根
,則數(shù)列通項可以寫成
,(其中
是待定常數(shù));
②若方程
有兩相同實根
,則數(shù)列通項可以寫成
,(其中
是待定常數(shù));
再利用
可求得
,進而求得
.
根據(jù)上述結(jié)論求下列問題:
(1)當(dāng)
,
(
)時,求數(shù)列
的通項公式;
(2)當(dāng)
,
(
)時,求數(shù)列
的通項公式;
(3)當(dāng)
,
(
)時,記
,若
能被數(shù)
整除,求所有滿足條件的正整數(shù)
的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆上海市盧灣區(qū)高三上學(xué)期期末數(shù)學(xué)理卷 題型:解答題
(本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分8分,第3小題滿分6分.
已知負數(shù)
和正數(shù)
,且對任意的正整數(shù)n,當(dāng)
≥0時, 有[
,
]=
[
,
];當(dāng)
<0時, 有[
,
]= [
, ![]()
].
(1)求證數(shù)列{
}是等比數(shù)列;
(2)若
,求證![]()
;
(3)是否存在
,使得數(shù)列
為常數(shù)數(shù)列?請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟寧市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分18分)已知拋物線C的頂點在原點,焦點在y軸正半軸上,點
到其準(zhǔn)線的距離等于5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)如圖,過拋物線C的焦點的直線從左到右依次與拋物線C及圓
交于A、C、D、B四點,試證明
為定值;
(Ⅲ)過A、B分別作拋物C的切線
且
交于點M,求
與
面積之和的最小值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市青浦區(qū)高三上學(xué)期期終學(xué)習(xí)質(zhì)量調(diào)研測試數(shù)學(xué)試卷 題型:解答題
(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
設(shè)
,對于項數(shù)為
的有窮數(shù)列
,令
為
中最大值,稱數(shù)列
為
的“創(chuàng)新數(shù)列”.例如數(shù)列
3,5,4,7的創(chuàng)新數(shù)列為3,5,5,7.
考查自然數(shù)
的所有排列,將每種排列都視為一個有窮數(shù)列
.
(1)若
,寫出創(chuàng)新數(shù)列為3,4,4,4的所有數(shù)列
;
(2)是否存在數(shù)列
的創(chuàng)新數(shù)列為等比數(shù)列?若存在,求出符合條件的創(chuàng)新數(shù)列;若不存在,請說明理由.
(3)是否存在數(shù)列
,使它的創(chuàng)新數(shù)列為等差數(shù)列?若存在,求出滿足所有條件的數(shù)列
的個數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題
(本題滿分18分,其中第1小題6分,第2小題6分,第3小題6分)
已知數(shù)列
的首項為1,前
項和為
,且滿足
,
.?dāng)?shù)列
滿足
.
(1) 求數(shù)列
的通項公式;
(2) 當(dāng)
時,試比較
與
的大小,并說明理由;
(3) 試判斷:當(dāng)
時,向量![]()
是否可能恰為直線![]()
的方向向量?請說明你的理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com