【題目】某高校在
年的自主招生考試成績(jī)中隨機(jī)抽取
名學(xué)生的筆試成績(jī),按成績(jī)共分五組,得到如下的頻率分布表:
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第一組 |
|
|
|
第二組 |
|
|
|
第三組 |
|
|
|
第四組 |
|
|
|
第五組 |
|
|
|
(1)請(qǐng)寫出頻率分布表中
、
、
的值,若同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中間值代替,請(qǐng)估計(jì)全體考生的平均成績(jī);
(2)為了能選出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第
、
、
組中用分層抽樣的方法抽取
名考生進(jìn)入第二輪面試,求第
、
、
組中每組各抽取多少名考生進(jìn)入第二輪的面試;
(3)在(2)的前提下,學(xué)校要求每個(gè)學(xué)生需從
、
兩個(gè)問題中任選一題作為面試題目,求第三組和第五組中恰好有
個(gè)學(xué)生選到問題
的概率.
【答案】(1)
,
,
,平均成績(jī)?yōu)?/span>
;(2)第
、
、
組分別抽取
人、
人、
人;(3)
.
【解析】
(1)根據(jù)分層抽樣的特點(diǎn)可得出
、
、
的值,將每組的中點(diǎn)值乘以對(duì)應(yīng)組的頻率,相加可得出全體考生的平均成績(jī);
(2)根據(jù)分層抽樣的特點(diǎn)可求得第
、
、
組中每組所抽取的學(xué)生人數(shù);
(3)列舉出所有的基本事件,利用古典概型的概率公式可求得所求事件的概率.
(1)由題意知,
,
,
,
全體考生的平均成績(jī)?yōu)?/span>
(分);
(2)第
、
、
組共
名學(xué)生,現(xiàn)抽取
名,
因此第
組抽取的人數(shù)為
人,第
組抽取的人數(shù)為
人,第
組抽取的人數(shù)為
人;
(3)所有的基本事件如下:
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
,
所以,基本事件總數(shù)為
種.
第三組和第五組中恰好有
個(gè)學(xué)生選到問題B的基本事件如下:
、
、
、
、
、
,
共包含
個(gè)基本事件.
故第三組和第五組中恰好有
個(gè)學(xué)生選到問題
的概率
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
的奇數(shù)項(xiàng)是首項(xiàng)為1的等差數(shù)列,偶數(shù)項(xiàng)是首項(xiàng)為2的等比數(shù)列.數(shù)列
前
項(xiàng)和為
,且滿足![]()
(1)求數(shù)列
的通項(xiàng)公式;
(2)求數(shù)列
前
項(xiàng)和
;
(3)在數(shù)列
中,是否存在連續(xù)的三項(xiàng)
,按原來的順序成等差數(shù)列?若存在,求出所有滿足條件的正整數(shù)
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程和
的直角坐標(biāo)方程;
(2)已知曲線
的極坐標(biāo)方程為
,點(diǎn)
是曲線
與
的交點(diǎn),點(diǎn)
是曲線
與
的交點(diǎn),
、
均異于原點(diǎn)
,且
,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓![]()
上一點(diǎn)
關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為
,點(diǎn)
,
的面積為
,直線
過
上的點(diǎn)
.
(1)求
的方程;
(2)設(shè)
為
的短軸端點(diǎn),直線
過點(diǎn)
交
于
,證明:四邊形
的兩條對(duì)角線的交點(diǎn)在定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱
中,底面
為等邊三角形,E,F分別為
,
的中點(diǎn),
,
.
![]()
(1)證明:
平面
;
(2)求直線
與平面
所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,海岸公路MN的北方有一個(gè)小島A(大小忽略不計(jì))盛產(chǎn)海產(chǎn)品,在公路MN的B處有一個(gè)海產(chǎn)品集散中心,點(diǎn)C在B的正西方向10
處,
,
,計(jì)劃開辟一條運(yùn)輸線將小島的海產(chǎn)品運(yùn)送到集散中心.現(xiàn)有兩種方案:①沿線段AB開辟海上航線:②在海岸公路MN上選一點(diǎn)P建一個(gè)碼頭,先從海上運(yùn)到碼頭,再公路MN運(yùn)送到集散中心.已知海上運(yùn)輸、岸上運(yùn)輸費(fèi)用分別為400元/
、200元/
.
![]()
(1)求方案①的運(yùn)輸費(fèi)用;
(2)請(qǐng)確定P點(diǎn)的位置,使得按方案②運(yùn)送時(shí)運(yùn)輸費(fèi)用最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求證:當(dāng)
時(shí),
的圖象位于直線
上方;
(Ⅱ)設(shè)函數(shù)
,若曲線
在點(diǎn)
處的切線與
軸平行,且在點(diǎn)
處的切線與直線
平行(
為坐標(biāo)原點(diǎn)),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρsinθ=2.
(1)M為曲線C1上的動(dòng)點(diǎn),點(diǎn)P在線段OM上,且滿足
,求點(diǎn)P的軌跡C2的直角坐標(biāo)方程;
(2)曲線C2上兩點(diǎn)
與點(diǎn)B(ρ2,α),求△OAB面積的最大值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com