已知函數(shù)f(x)=mx3+nx2(m、n∈R ,m≠0)的圖像在(2,f(2))處的切線與x軸平行.
(1)求n,m的關系式并求f(x)的單調減區(qū)間;
(2)證明:對任意實數(shù)0<x1<x2<1, 關于x的方程:
在(x1,x2)恒有實數(shù)解
(3)結合(2)的結論,其實我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內導數(shù)都存在,則在(a,b)內至少存在一點x0,使得
.如我們所學過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:
當0<a<b時,
(可不用證明函數(shù)的連續(xù)性和可導性)
解:(1)因為f’(x)=3mx2+2nx,---1’ 由已知有f’(2)=0,所以3m+n=0即n=-3m
即f’(x)=3mx2-6mx,由f’(x)>0知mx(x-2)>0.
當m>0時得x<0或x>2,f(x)的減區(qū)間為(0,2);
當m<0時得:0<x<2,f(x)的減區(qū)間為(-∞,0),(2,+∞);
綜上所述:當m>0時,f(x)的減區(qū)間為(0,2);
當m<0時,f(x)的減區(qū)間為(-∞,0),(2,+∞);
![]()
可化為3x2-6x-x12-x22-x1x2+3x1+3x2=0,令h(x)= 3x2-6x-x12-x22-x1x2+3x1+3x2
則h(x1)=(x1-x2)(2x1+x2-3),h(x2)=(x2-x1)(x1+2x2-3),
即h(x1)h(x2)=-(x1-x2)2(2x1+x2-3)(x1+2x2-3)
又因為0<x1<x2<1,所以(2x1+x2-3)<0,(x1+2x2-3)<0, 即h(x1)h(x2)<0,
故h(x)=0在區(qū)間(x1,x2)內必有解,
即關于x的方程
在(x1,x2)恒有實數(shù)解
(3)令g(x)=lnx,x∈(a,b),
則g(x)符合拉格朗日中值定理的條件,即存在x0∈(a,b),使![]()
因為g’(x)=
,由x∈(a,b),0<a<b可知g’(x)∈(
),b-a>0
即
。
科目:高中數(shù)學 來源: 題型:
| 1 |
| m |
| 1 |
| x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
| 1 |
| 1+ax |
| 1 |
| 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
| m•3x-1 |
| 3x+1 |
| 1 |
| 2 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com