【題目】已知
,函數(shù)
.
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)遞增區(qū)間;
(2)求函數(shù)
的零點(diǎn)個(gè)數(shù).
【答案】(1)見解析;(2)見解析
【解析】
(1)先根據(jù)絕對(duì)值定義化為分段函數(shù)形式,再分別根據(jù)二次函數(shù)性質(zhì)確定單調(diào)遞增區(qū)間,(2)作函數(shù)
圖象,根據(jù)圖象分類討論零點(diǎn)個(gè)數(shù).
(1)當(dāng)
時(shí),![]()
當(dāng)
時(shí),
,
的對(duì)稱軸為![]()
所以,
的單調(diào)遞增區(qū)間為![]()
當(dāng)
時(shí),
,
的對(duì)稱軸為![]()
所以,
的單調(diào)遞增區(qū)間為![]()
(2)令
,即
,
,
求函數(shù)
的零點(diǎn)個(gè)數(shù),即求
與
的交點(diǎn)個(gè)數(shù);
當(dāng)
時(shí),
,
的對(duì)稱軸為![]()
當(dāng)
時(shí),
,
的對(duì)稱軸為![]()
①當(dāng)
時(shí),
,
![]()
故由圖像可得,
與
只存在一個(gè)交點(diǎn).
②當(dāng)
時(shí),
,且
,
![]()
故由圖像可得,
當(dāng)
時(shí),
,
與
只存在兩個(gè)交點(diǎn);
當(dāng)
時(shí),
,
與
只存在一個(gè)交點(diǎn);
當(dāng)
時(shí),
,
與
只存在三個(gè)交點(diǎn).
③當(dāng)
時(shí),
,
![]()
故由圖像可得,
與
只存在一個(gè)交點(diǎn).
綜上所述:當(dāng)
時(shí),
存在三個(gè)零點(diǎn);
當(dāng)
時(shí),
存在兩個(gè)零點(diǎn);
當(dāng)
時(shí),
存在一個(gè)零點(diǎn).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市政府為了引導(dǎo)居民合理用水,決定全面實(shí)施階梯水價(jià),階梯水價(jià)原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價(jià):若用水量不超過12噸時(shí),按4元/噸計(jì)算水費(fèi);若用水量超過12噸且不超過14噸時(shí),超過12噸部分按6.60元/噸計(jì)算水費(fèi);若用水量超過14噸時(shí),超過14噸部分按7.80元/噸計(jì)算水費(fèi).為了了解全市居民月用水量的分布情況,通過抽樣,獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照[0,2],(2,4],…,(14,16]分成8組,制成了如圖1所示的頻率分布直方圖. ![]()
(Ⅰ)假設(shè)用抽到的100戶居民月用水量作為樣本估計(jì)全市的居民用水情況.
( i)現(xiàn)從全市居民中依次隨機(jī)抽取5戶,求這5戶居民恰好3戶居民的月用水用量都超過12噸的概率;
(ⅱ)試估計(jì)全市居民用水價(jià)格的期望(精確到0.01);
(Ⅱ)如圖2是該市居民李某2016年1~6月份的月用水費(fèi)y(元)與月份x的散點(diǎn)圖,其擬合的線性回歸方程是
.若李某2016年1~7月份水費(fèi)總支出為294.6元,試估計(jì)李某7月份的用水噸數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,則異面直線AB1與BC1所成角的余弦值為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行六面體ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=
,∠BAD=120°.
(Ⅰ)求異面直線A1B與AC1所成角的余弦值;
(Ⅱ)求二面角B﹣A1D﹣A的正弦值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,PA⊥底面ABC,∠BAC=90°.點(diǎn)D,E,N分別為棱PA,PC,BC的中點(diǎn),M是線段AD的中點(diǎn),PA=AC=4,AB=2.![]()
(Ⅰ)求證:MN∥平面BDE;
(Ⅱ)求二面角C﹣EM﹣N的正弦值;
(Ⅲ)已知點(diǎn)H在棱PA上,且直線NH與直線BE所成角的余弦值為
,求線段AH的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,
,
,
以AC的中點(diǎn)O為球心,AC為直徑的球面交PD于點(diǎn)M,交PC于點(diǎn)N.
![]()
(1)求證:平面ABM⊥平面PCD;
(2)求直線CD與平面ACM所成角的大小;
(3)求點(diǎn)N到平面ACM的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若
,
(Ⅰ)求證:
;
(Ⅱ)求證:
;
(Ⅲ)在(Ⅱ)中的不等式中,能否找到一個(gè)代數(shù)式,滿足
所求式
?若能,請(qǐng)直接寫出該代數(shù)式;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,
平面
,在直角梯形
中,
,
,
,
為線段
的中點(diǎn)
![]()
(1)求證:平面
平面
(2)在線段
上是否存在點(diǎn)
,使得
平面
?若存在,求出點(diǎn)
的位置;若不存在,請(qǐng)說明理由
(3)若
是
中點(diǎn),
,
,
,求三棱錐
的體積.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com