【題目】如圖,已知
平面
平面
為等邊三角形,
為
的中點.
![]()
(1)求證:平面
平面
;
(2)求直線
和平面
所成角的正弦值.
科目:高中數學 來源: 題型:
【題目】已知雙曲線
的兩條漸近線與拋物線
的準線分別交于A,B兩點,O為坐標原點,若
,則雙曲線的離心率
__________.
【答案】![]()
【解析】因為雙曲線
的兩條漸近線為
,拋物線
的準線為
,所以
,
因此
點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關鍵就是確立一個關于
的方程或不等式,再根據
的關系消掉
得到
的關系式,而建立關于
的方程或不等式,要充分利用橢圓和雙曲線的幾何性質、點的坐標的范圍等.
【題型】填空題
【結束】
16
【題目】若函數
滿足:對于
圖象上任意一點P,在其圖象上總存在點
,使得
成立,稱函數
是“特殊對點函數”.給出下列五個函數:
①
;②
(其中e為自然對數的底數);③
;④
;
⑤
.
其中是“特殊對點函數”的序號是__________.(寫出所有正確的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】3月12日,全國政協總工會界別小組會議上,人社部副部長湯濤在回應委員呼聲時表示無論是從養老金方面,還是從人力資源的合理配置來說,延遲退休是大勢所趨.不過,湯部長也表示,不少職工對于延遲退休有著不同的意見.某高校一社團就是否同意延遲退休的情況隨機采訪了200名市民,并進行了統計,得到如下的
列聯表:
贊同延遲退休 | 不贊同延遲退休 | 合計 | |
男性 | 80 | 20 | 100 |
女性 | 60 | 40 | 100 |
合計 | 140 | 60 | 200 |
(1)根據上面的列聯表判斷能否有
的把握認為對延遲退休的態度與性別有關;
(2)為了進一步征求對延遲退休的意見和建議,從抽取的200位市民中對不贊同的按照分層抽樣的方法抽取6人,再從這6人中隨機抽出3名進行電話回訪,求3人中至少有1人為男性的概率.
附:
,其中
.
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條的相關規定:機動車行經人行道時,應當減速慢行;遇行人正在通過人行道,應當停車讓行,俗稱“禮讓斑馬線”, 《中華人民共和國道路交通安全法》第90條規定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監控設備所抓拍的5個月內駕駛員“禮讓斑馬線”行為統計數據:
月份 | 1 | 2 | 3 | 4 | 5 |
違章駕駛員人數 | 120 | 105 | 100 | 90 | 85 |
(1)請利用所給數據求違章人數
與月份
之間的回歸直線方程
;
(2)預測該路口9月份的不“禮讓斑馬線”違章駕駛員人數.
參考公式:
,
.
參考數據:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
的部分圖象如圖所示,且相鄰的兩個最值點的距離為
.
![]()
(1)求函數
的解析式;
(2)若將函數
的圖象向左平移1個單位長度后得到函數
的圖象,關于
的不等式
在
上有解,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某移動支付公司隨機抽取了100名移動支付用戶進行調查,得到如下數據:
每周移動支付次數 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合計 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)在每周使用移動支付超過3次的樣本中,按性別用分層抽樣隨機抽取5名用戶.
①求抽取的5名用戶中男、女用戶各多少人;
②從這5名用戶中隨機抽取2名用戶,求抽取的2名用戶均為男用戶的概率.
(2)如果認為每周使用移動支付次數超過3次的用戶“喜歡使用移動支付”,能否在犯錯誤概率不超過0.05的前提下,認為“喜歡使用移動支付”與性別有關?
附表及公式: ![]()
| 0.50 | 0.25 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
| 0.455 | 1.323 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(n)是定義在N*上的增函數,f(4)=5,且滿足:
①任意n∈N*,f(n)
Z;②任意m,n∈N*,有f(m)f(n)=f(mn)+f(m+n-1).
(1)求f(1),f(2),f(3)的值;
(2)求f(n)的表達式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(Ⅰ)設命題
實數
滿足
,其中
,命題
實數
滿足
.若
是
的充分不必要條件,求實數
的取值范圍.
(Ⅱ)已知命題
方程
表示焦點在x軸上雙曲線;命題
空間向量
,
的夾角為銳角,如果命題“
”為真,命題“
”為假.求
的取值范圍;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com