【題目】已知定義在(0,+∞)上的函數f(x),滿足f(mn)=f(m)+f(n)(m,n>0),且當x>1時,有f(x)>0.
①求證:f(
)=f(m)﹣f(n);
②求證:f(x)在(0,+∞)上是增函數;
③比較f(
)與
的大小.
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在平面直角坐標系
中,已知直線
:
(
為參數),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線
的直角坐標方程;
(2)設點
的極坐標為
,直線
與曲線
的交點為
,
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某品牌經銷商在一廣場隨機采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調查結果如下:
微信控 | 非微信控 | 合計 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計 | 56 | 44 | 100 |
(1)根據以上數據,能否有95%的把握認為“微信控”與“性別”有關?
(2)現從調查的女性用戶中按分層抽樣的方法選出5人,求所抽取的5人中“微信控”和“非微信控”的人數;
(3)從(2)中抽取的5位女性中,再隨機抽取3人贈送禮品,試求抽取3人中恰有2人位“微信控”的概率.
參考公式:
,其中
.
參考數據:
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知2件次品和3件正品混放在一起,現需要通過檢測將其區分,每次隨機檢測一件產品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結束.
(1)求最后取出的是正品的概率;
(2)已知每檢測一件產品需要費用100元,設
表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費用(單位:元),求
的分布列和數學期望
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數
的定義域為A,若
時總有
為單函數.例如,函數
=2x+1(
)是單函數.下列命題:
①函數
=
(x
R)是單函數;②若
為單函數,
且
則
;③若f:A
B為單函數,則對于任意b
B,它至多有一個原象;
④函數f(x)在某區間上具有單調性,則f(x)一定是單函數.其中的真命題是 .(寫出所有真命題的編號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax﹣lnx,a∈R.
(1)求函數f(x)的單調區間;
(2)當x∈(0,e]時,求g(x)=e2x﹣lnx的最小值;
(3)當x∈(0,e]時,證明:e2x﹣lnx﹣
>
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某超市,隨機調查了100名顧客購物時使用手機支付支付的情況,得到如下的
列聯表,已知從其中使用手機支付的人群中隨機抽取1人,抽到青年的概率為
.
(1)根據已知條件完成
列聯表,并根據此資料判斷是否有99.9%的把握認為“超市購物用手機支付與年齡有關”.
(2)現按照“使用手機支付”和“不使用手機支付”進行分層抽樣,從這100名顧客中抽取容量為5的樣本,求“從樣本中任選3人,則3人中至少2人使用手機支付”的概率.
青年 | 中老年 | 合計 | |
使用手機支付 | 60 | ||
不使用手機支付 | 28 | ||
合計 | 100 |
| 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】通過隨機詢問100性別不同的大學生是否愛好某項運動,得到如下2×2列聯表:
男 | 女 | 總計 | |
愛好 | 40 | ||
不愛好 | 25 | ||
總計 | 45 | 100 |
(1)將題中的2×2列聯表補充完整;
(2)能否有99%的把握認為斷愛好該項運動與性別有關?請說明理由;
附:K2=
,
p(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
(3)利用分層抽樣的方法從以上愛好該項運動的大學生中抽取6人組建了“運動達人社”,現從“運動達人設”中選派3人參加某項校際挑戰賽,記選出3人中的女大學生人數為X,求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線
的極坐標方程是
.以極點為平面直角坐標系的原點,極軸為
軸的正半軸,建立平面直角坐標系,直線
的參數方程是
(
為參數).
(Ⅰ)將曲線
的極坐標方程化為直角坐標方程;
(Ⅱ)若直線
與曲線
相交于
,
兩點,且
,求直線
的傾斜角
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com