【題目】已知函數(shù)
(
為實(shí)常數(shù)).
![]()
(1)當(dāng)
時(shí),作出
的圖象,并寫(xiě)出它的單調(diào)遞增區(qū)間;
(2)設(shè)
在區(qū)間
的最小值為
,求
的表達(dá)式;
(3)設(shè)
,若函數(shù)
在區(qū)間
上是增函數(shù),求實(shí)數(shù)
的取值范圍.
【答案】(1)圖見(jiàn)解析,
; (2)
; (3) ![]()
【解析】
(1)當(dāng)a=0時(shí),f(x)=x2﹣1,結(jié)合函數(shù)y=|f(x)|的圖象可得它的增區(qū)間.
(2)函數(shù)f(x)=x2﹣ax+2a﹣1的對(duì)稱(chēng)軸為 x
,分當(dāng)
時(shí)、當(dāng)
時(shí)、當(dāng)
時(shí)三種情況,分別求得g(a),綜合可得結(jié)論.
(3)根據(jù)
,再分當(dāng)2a﹣1≤0和當(dāng)2a﹣1>0時(shí)兩種情況,根據(jù)h(x)在區(qū)間[1,2]上是增函數(shù),分別求得a的范圍,再取并集.
(1)當(dāng)
時(shí),
,圖象如圖:
![]()
則
在
上單調(diào)遞增;
(2)當(dāng)
時(shí),即
,
;
當(dāng)
時(shí),即
,
;
當(dāng)
時(shí),即
,
;
綜上:![]()
(3)![]()
當(dāng)
,即
,
是單調(diào)遞增的,符合題意;
當(dāng)
,即
時(shí),
在
單調(diào)遞減,在
單調(diào)遞增,
令
,得
.
綜上所述:
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】食品安全一直是人們關(guān)心和重視的問(wèn)題,學(xué)校的食品安全更是社會(huì)關(guān)注的焦點(diǎn).某中學(xué)為了加強(qiáng)食品安全教育,隨機(jī)詢(xún)問(wèn)了36名不同性別的中學(xué)生在購(gòu)買(mǎi)食品時(shí)是否看保質(zhì)期,得到如下“性別”與“是否看保質(zhì)期”的列聯(lián)表:
男 | 女 | 總計(jì) | |
看保質(zhì)期 | 8 | 22 | |
不看保持期 | 4 | 14 | |
總計(jì) |
(1)請(qǐng)將列聯(lián)表填寫(xiě)完整,并根據(jù)所填的列聯(lián)表判斷,能否有
的把握認(rèn)為“性別”與“是否看保質(zhì)期”有關(guān)?
(2)從被詢(xún)問(wèn)的14名不看保質(zhì)期的中學(xué)生中,隨機(jī)抽取3名,求抽到女生人數(shù)
的分布列和數(shù)學(xué)期望.
附:
,(
).
臨界值表:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=
,g(x)=ax2+bx(a,b∈R,a≠0)若y=f(x)的圖象與y=g(x)圖象有且僅有兩個(gè)不同的公共點(diǎn)A(x1 , y1),B(x2 , y2),則下列判斷正確的是( )
A.當(dāng)a<0時(shí),x1+x2<0,y1+y2>0
B.當(dāng)a<0時(shí),x1+x2>0,y1+y2<0
C.當(dāng)a>0時(shí),x1+x2<0,y1+y2<0
D.當(dāng)a>0時(shí),x1+x2>0,y1+y2>0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在2007全運(yùn)會(huì)上兩名射擊運(yùn)動(dòng)員甲、乙在比賽中打出如下成績(jī):
甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;
乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;
(1)用莖葉圖表示甲,乙兩個(gè)成績(jī);并根據(jù)莖葉圖分析甲、乙兩人成績(jī);
(2)分別計(jì)算兩個(gè)樣本的平均數(shù)
和標(biāo)準(zhǔn)差
,并根據(jù)計(jì)算結(jié)果估計(jì)哪位運(yùn)動(dòng)員的成績(jī)比較穩(wěn)定.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某聯(lián)歡晚會(huì)舉行抽獎(jiǎng)活動(dòng),舉辦方設(shè)置了甲、乙兩種抽獎(jiǎng)方案,方案甲的中獎(jiǎng)率為
,中獎(jiǎng)可以獲得2分;方案乙的中獎(jiǎng)率為
,中獎(jiǎng)可以獲得3分;未中獎(jiǎng)則不得分。每人有且只有一次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)中獎(jiǎng)與否互不影響,晚會(huì)結(jié)束后憑分?jǐn)?shù)兌換獎(jiǎng)品。
(Ⅰ)若小明選擇方案甲抽獎(jiǎng),小紅選擇方案乙抽獎(jiǎng),記他們的累計(jì)得分為
,求
的概率;
(Ⅱ)若小明、小紅兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎(jiǎng),問(wèn):他們選擇何種方案抽獎(jiǎng),累計(jì)得分的數(shù)學(xué)期望較大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】行駛中的汽車(chē),在剎車(chē)時(shí)由于慣性作用,要繼續(xù)往前滑行一段距離才能停下,這段距離叫做剎車(chē)距離,在某種路面上,某種型號(hào)的汽車(chē)的剎車(chē)距離s(m)與汽車(chē)的車(chē)速v(m/s)滿(mǎn)足下列關(guān)系:
(n為常數(shù),且
),做了兩次剎車(chē)實(shí)驗(yàn),發(fā)現(xiàn)實(shí)驗(yàn)數(shù)據(jù)如圖所示其中![]()
![]()
(1)求出n的值;
(2)要使剎車(chē)距離不超過(guò)12.6米,則行駛的最大速度應(yīng)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
(θ為參數(shù)),直線l的參數(shù)方程為
.
(1)若a=1,求C與l的交點(diǎn)坐標(biāo);
(2)若C上的點(diǎn)到l的距離的最大值為
,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),直線
的參數(shù)方程為
(
為參數(shù)).
(1)求
和
的直角坐標(biāo)方程;
(2)若曲線
截直線
所得線段的中點(diǎn)坐標(biāo)為
,求
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)
在區(qū)間
上有最大值4,最小值0.
(1)求函數(shù)
的解析式;
(2)設(shè)
,若
在
時(shí)恒成立,求
的范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com