【題目】正項數列
的前
項和為
,
,且
,
(
為常數).
(1)求證:數列
為等比數列;
(2)若
,且
,對任意
,
都有
,求
的值;
(3)若
,是否存在正整數
,且
,使得
,
,
三項成等比數列?
科目:高中數學 來源: 題型:
【題目】隨著科學技術的飛速發展,網絡也已經逐漸融入了人們的日常生活,網購作為一種新的消費方式,因其具有快捷、商品種類齊全、性價比高等優勢而深受廣大消費者認可.某網購公司統計了近五年在本公司網購的人數,得到如下的相關數據(其中“x=1”表示2015年,“x=2”表示2016年,依次類推;y表示人數):
x | 1 | 2 | 3 | 4 | 5 |
y(萬人) | 20 | 50 | 100 | 150 | 180 |
(1)試根據表中的數據,求出y關于x的線性回歸方程,并預測到哪一年該公司的網購人數能超過300萬人;
(2)該公司為了吸引網購者,特別推出“玩網絡游戲,送免費購物券”活動,網購者可根據拋擲骰子的結果,操控微型遙控車在方格圖上行進. 若遙控車最終停在“勝利大本營”,則網購者可獲得免費購物券500元;若遙控車最終停在“失敗大本營”,則網購者可獲得免費購物券200元. 已知骰子出現奇數與偶數的概率都是
,方格圖上標有第0格、第1格、第2格、…、第20格。遙控車開始在第0格,網購者每拋擲一次骰子,遙控車向前移動一次.若擲出奇數,遙控車向前移動一格(從
到
)若擲出偶數遙控車向前移動兩格(從
到
),直到遙控車移到第19格勝利大本營)或第20格(失敗大本營)時,游戲結束。設遙控車移到第
格的概率為
,試證明
是等比數列,并求網購者參與游戲一次獲得免費購物券金額的期望值.
附:在線性回歸方程
中,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線
與
橢圓
的一個交點為
,點![]()
是
的焦點,且
.
(1)求
與
的方程;
(2)設
為坐標原點,在第一象限內,橢圓
上是否存在點
,使過
作
的垂線交拋物線
于
,直線
交
軸于
,且
?若存在,求出點
的坐標和
的面積;若不存在,說明理由.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業引進現代化管理體制,生產效益明顯提高.2018年全年總收入與2017年全年總收入相比增長了一倍,實現翻番.同時該企業的各項運營成本也隨著收入的變化發生了相應變化.下圖給出了該企業這兩年不同運營成本占全年總收入的比例,下列說法正確的是( )
![]()
A.該企業2018年原材料費用是2017年工資金額與研發費用的和
B.該企業2018年研發費用是2017年工資金額、原材料費用、其它費用三項的和
C.該企業2018年其它費用是2017年工資金額的![]()
D.該企業2018年設備費用是2017年原材料的費用的兩倍
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面多邊形
中,四邊形
是邊長為2的正方形,四邊形
為等腰梯形,
為
的中點,
,現將梯形
沿
折疊,使平面
平面
.
![]()
(1)求證:
面
;
(2)求
與平面
成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】十九世紀末,法國學者貝特朗在研究幾何概型時提出了“貝特朗悖論”,即“在一個圓內任意選一條弦,這條弦的弦長長于這個圓的內接等邊三角形邊長的概率是多少?”貝特朗用“隨機半徑”、“隨機端點”、“隨機中點”三個合理的求解方法,但結果都不相同.該悖論的矛頭直擊概率概念本身,強烈地刺激了概率論基礎的嚴格化.已知“隨機端點”的方法如下:設A為圓O上一個定點,在圓周上隨機取一點B,連接AB,所得弦長AB大于圓O的內接等邊三角形邊長的概率.則由“隨機端點”求法所求得的概率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年,中華人民共和國成立70周年,為了慶祝建國70周年,某中學在全校進行了一次愛國主義知識競賽,共1000名學生參加,答對題數(共60題)分布如下表所示:
組別 |
|
|
|
|
|
|
頻數 | 10 | 185 | 265 | 400 | 115 | 25 |
答對題數
近似服從正態分布
,
為這1000人答對題數的平均值(同一組數據用該組區間的中點值作為代表).
(1)估計答對題數在
內的人數(精確到整數位).
(2)學校為此次參加競賽的學生制定如下獎勵方案:每名同學可以獲得2次抽獎機會,每次抽獎所得獎品的價值與對應的概率如下表所示.
獲得獎品的價值(單位:元) | 0 | 10 | 20 |
概率 |
|
|
|
用
(單位:元)表示學生甲參與抽獎所得獎品的價值,求
的分布列及數學期望.
附:若
,則
,
,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com