【題目】已知
為圓
上一點(diǎn),過點(diǎn)
作
軸的垂線交
軸于點(diǎn)
,點(diǎn)
滿足![]()
(1)求動(dòng)點(diǎn)
的軌跡方程;
(2)設(shè)
為直線
上一點(diǎn),
為坐標(biāo)原點(diǎn),且
,求
面積的最小值.
【答案】(1)
(2) ![]()
【解析】
(1)設(shè)出A、P點(diǎn)坐標(biāo),用P點(diǎn)坐標(biāo)表示A點(diǎn)坐標(biāo),然后代入圓方程,從而求出P點(diǎn)的軌跡;
(2)設(shè)出P點(diǎn)坐標(biāo),根據(jù)斜率存在與否進(jìn)行分類討論,當(dāng)斜率不存在時(shí),求出
面積的值,當(dāng)斜率存在時(shí),利用點(diǎn)P坐標(biāo)表示
的面積,減元后再利用函數(shù)單調(diào)性求出最值,最后總結(jié)出最值.
解:(1) 設(shè)
,
由題意得:
,
由
,可得點(diǎn)
是
的中點(diǎn),
故
,
所以
,
又因?yàn)辄c(diǎn)
在圓上,
所以得
,
故動(dòng)點(diǎn)
的軌跡方程為
.
(2)設(shè)
,則
,且
,
當(dāng)
時(shí),
,此時(shí)
;
當(dāng)
時(shí),![]()
因?yàn)?/span>
,
即![]()
故
,
,
,
①,
代入①
![]()
設(shè)
因?yàn)?/span>
恒成立,
在
上是減函數(shù),
當(dāng)
時(shí)有最小值,即
,
綜上:
的最小值為![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,錯(cuò)誤命題是
A. “若
,則
”的逆命題為真
B. 線性回歸直線
必過樣本點(diǎn)的中心![]()
C. 在平面直角坐標(biāo)系中到點(diǎn)
和
的距離的和為
的點(diǎn)的軌跡為橢圓
D. 在銳角
中,有![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】向50名學(xué)生調(diào)查對A、B兩事件的態(tài)度,有如下結(jié)果:贊成A的人數(shù)是全體的五分之三,其余的不贊成,贊成B的比贊成A的多3人,其余的不贊成;另外,對A、B都不贊成的學(xué)生數(shù)比對A、B都贊成的學(xué)生數(shù)的三分之一多1人. 問對A、B都贊成的學(xué)生有____________人
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接“五一國際勞動(dòng)節(jié)”,某商場規(guī)定購買超過6000元商品的顧客可以參與抽獎(jiǎng)活動(dòng)現(xiàn)有甲品牌和乙品牌的掃地機(jī)器人作為獎(jiǎng)品,從這兩種品牌的掃地機(jī)器人中各隨機(jī)抽取6臺檢測它們充滿電后的工作時(shí)長相關(guān)數(shù)據(jù)見下表(工作時(shí)長單位:分)
機(jī)器序號 | 1 | 2 | 3 | 4 | 5 | 6 |
甲品牌工作時(shí)長/分 | 220 | 180 | 210 | 220 | 200 | 230 |
乙品牌工作時(shí)長/分 | 200 | 190 | 240 | 230 | 220 | 210 |
(1)根據(jù)所提供的數(shù)據(jù),計(jì)算抽取的甲品牌的掃地機(jī)器人充滿電后工作時(shí)長的平均數(shù)與方差;
(2)從乙品牌被抽取的6臺掃地機(jī)器人中隨機(jī)抽出3臺掃地機(jī)器人,記抽出的掃地機(jī)器人充滿電后工作時(shí)長不低于220分鐘的臺數(shù)為
,求
的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程
(
為參數(shù)),直線
的參數(shù)方程
(
為參數(shù)).
(1)求曲線
在直角坐標(biāo)系中的普通方程;
(2)以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,當(dāng)曲線
截直線
所得線段的中點(diǎn)極坐標(biāo)為
時(shí),求直線
的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了豐富學(xué)生的課外文化生活,某中學(xué)積極探索開展課外文體活動(dòng)的新途徑及新形式,取得了良好的效果.為了調(diào)查學(xué)生的學(xué)習(xí)積極性與參加文體活動(dòng)是否有關(guān),學(xué)校對200名學(xué)生做了問卷調(diào)查,列聯(lián)表如下:
參加文體活動(dòng) | 不參加文體活動(dòng) | 合計(jì) | |
學(xué)習(xí)積極性高 | 80 | ||
學(xué)習(xí)積極性不高 | 60 | ||
合計(jì) | 200 |
已知在全部200人中隨機(jī)抽取1人,抽到學(xué)習(xí)積極性不高的學(xué)生的概率為
.
(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.9%的把握認(rèn)為學(xué)習(xí)積極性高與參加文體活動(dòng)有關(guān)?請說明你的理由;
(3)若從不參加文體活動(dòng)的同學(xué)中按照分層抽樣的方法選取5人,再從所選出的5人中隨機(jī)選取2人,求至少有1人學(xué)習(xí)積極性不高的概率.
附:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓
的右頂點(diǎn)為
,左、右焦點(diǎn)分別為
、
,過點(diǎn)
且斜率為
的直線與
軸交于點(diǎn)
,與橢圓
交于另一個(gè)點(diǎn)
,且點(diǎn)
在
軸上的射影恰好為點(diǎn)
.
![]()
(1)求點(diǎn)
的坐標(biāo);
(2)過點(diǎn)
且斜率大于
的直線與橢圓交于
兩點(diǎn)
,若
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列
滿足
,數(shù)列
為
數(shù)列,記
.
(1)寫出一個(gè)滿足
,且
的
數(shù)列
;
(2)若
,
,證明:
數(shù)列
是遞增數(shù)列的充要條件是
;
(3)對任意給定的整數(shù)
,是否存在首項(xiàng)為0的
數(shù)列
,使得
?如果存在,寫出一個(gè)滿足條件的
數(shù)列
;如果不存在,說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com