【題目】高三(1)班班主任李老師為了了解本班學生喜愛中國古典文學是否與性別有關,對全班50人進行了問卷調查,得到如下列聯表:
喜歡中國古典文學 | 不喜歡中國古典文學 | 合計 | |
女生 | 5 | ||
男生 | 10 | ||
合計 | 50 |
已知從全班50人中隨機抽取1人,抽到喜歡中國古典文學的學生的概率為
.
(1)請將上面的列聯表補充完整;
(2)是否有
的把握認為喜歡中國古典文學與性別有關?請說明理由;
(3)已知在喜歡中國古典文學的10位男生中,
,
,
還喜歡數學,
,
還喜歡繪畫,
,
還喜歡體育.現從喜歡數學、繪畫和體育的男生中各選出1名進行其他方面的調查,求
和
不全被選中的概率.
參考公式及數據:
,其中
.
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)見解析;(2)見解析;(3)
.
【解析】【試題分析】(1)依據題設條件,直接運用聯列表分析求解;(2)借助題設條件,運用列聯表的數據關系進行分析推斷;(3)運用列舉法及古典概型的計算公式分析求解:
(1)因為從全班50人中隨機抽取1人,抽到喜歡中國古典文學的學生的概率為
,所以全班喜歡中國古典文學的學生為
人,列聯表補充如下:
喜歡中國古典文學 | 不喜歡中國古典文學 | 合計 | |
女生 | 20 | 5 | 25 |
男生 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
(2)由列聯表數據,得
,
因為
,所以有
的把握認為喜歡中國古典文學與性別有關.
(3)從喜歡數學、繪畫和體育的男生中各選取1名,總的基本事件有
、
、
、
、
、
、
、
、
、
、
、
共12個,其中
和
全被選中所包含的基本事件有
、
、
共3個,則
和
不全被選中所包含的基本事件有9個.
于是
和
不全被選中的概率
.
科目:高中數學 來源: 題型:
【題目】從某校高三上學期期末數學考試成績中,隨機抽取了
名學生的成績得到如圖所示的頻率分布直方圖:
![]()
(1)根據頻率分布直方圖,估計該校高三學生本次數學考試的平均分;
(2)若用分層抽樣的方法從分數在
和
的學生中共抽取
人,該
人中成績在
的有幾人?
(3)在(2)中抽取的
人中,隨機抽取
人,求分數在
和
各
人的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,直線
的參數方程為
。在以原點
為極點,
軸正半軸為極軸的極坐標系中,圓
的方程為
。
(1)寫出直線
的普通方程和圓
的直角坐標方程;
(2)若點P坐標為
,圓
與直線
交于
兩點,求
的值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}是等差數列,滿足a1=3,a4=12,數列{bn}滿足b1=4,b4=20,且{bn-an}為等比數列.
(1)求數列{an}和{bn}的通項公式;
(2)求數列{bn}的前n項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,已知某曲線C的極坐標方程為
,直線
的極坐標方程為![]()
(1)求該曲線C的直角坐標系方程及離心率![]()
(2)已知點
為曲線C上的動點,求點
到直線
的距離的最大值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知平面
平面
,四邊形
是正方形,四邊形
是菱形,且
,
,點
、
分別為邊
、
的中點,點
是線段
上的動點.
![]()
(1)求證:![]()
;
(2)求三棱錐
的體積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市化工廠三個車間共有工人1 000名,各車間男、女工人數如下表:
第一車間 | 第二車間 | 第三車間 | |
女工 | 173 | 100 | y |
男工 | 177 | x | z |
已知在全廠工人中隨機抽取1名,抽到第二車間男工的可能性是0. 15.
(1)求x的值;
(2)現用分層抽樣的方法在全廠抽取50名工人,問應在第三車間抽取多少名?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】通過隨機詢問110名性別不同的大學生是否愛好某項運動,得到如表的列聯表:
算得,K2≈7.8.見附表:參照附表,得到的正確結論是( )
男 | 女 | 總計 | |||||
愛好 | 40 | 20 | 60 | ||||
不愛好 | 20 | 30 | 50 | ||||
總計 | 60 | 50 | 110 | ||||
P(K2≥k) | 0.050 | 0.010 | 0.001 | ||||
k | 3.841 | 6.635 | 10.828 | ||||
A. 在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關”
B. 在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關”
C. 有99%以上的把握認為“愛好該項運動與性別有關”
D. 有99%以上的把握認為“愛好該項運動與性別無關”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的左焦點為
,右頂點為
,上頂點為
,過
、
、
三點的圓
的圓心坐標為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線
(
為常數,
)與橢圓
交于不同的兩點
和
.
(ⅰ)當直線
過
,且
時,求直線
的方程;
(ⅱ)當坐標原點
到直線
的距離為
,且
面積為
時,求直線
的傾斜角.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com