【題目】設集合
,
.記
為同時滿足下列條件的集合
的個數:
①
;②若
,則
;③若
,則
.
則(
)
___________;
(
)
的解析式(用
表示)
___________.
科目:高中數學 來源: 題型:
【題目】某水產養殖戶制作一體積為
立方米的養殖網箱(無蓋),網箱內部被隔成體積相等的三塊長方體區域(如圖),網箱.上底面的一邊長為
米,網箱的四周與隔欄的制作價格是
元/平方米,網箱底部的制作價格為
元/平方米.設網箱上底面的另一邊長為
米,網箱的制作總費用為
元.
![]()
(1)求出
與
之間的函數關系,并指出定義域;
(2)當網箱上底面的另一邊長
為多少米時,制作網箱的總費用最少.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,曲線
,曲線C2的參數方程為:
,(θ為參數),以O為極點,x軸的正半軸為極軸的極坐標系.
(1)求C1 , C2的極坐標方程;
(2)射線
與C1的異于原點的交點為A,與C2的交點為B,求|AB|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,已知圓
的方程為:
,直線
的方程為
.
(
)當
時,求直線
被圓
截得的弦長;
(
)當直線
被圓
截得的弦長最短時,求直線
的方程;
(
)在(
)的前提下,若
為直線
上的動點,且圓
上存在兩個不同的點到點
的距離為
,求點
的橫坐標的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l1的方程為3x+4y﹣12=0.
(1)若直線l2與l1平行,且過點(﹣1,3),求直線l2的方程;
(2)若直線l2與l1垂直,且l2與兩坐標軸圍成的三角形面積為4,求直線l2的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點
與點
都在橢圓
上.
(1)求橢圓
的方程;
(2)若
的左焦點、左頂點分別為
,則是否存在過點
且不與
軸重合的直線
(記直線
與橢圓
的交點為
),使得點
在以線段
為直徑的圓上;若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知以M為圓心的圓M:
及其上一點A(2,4)
![]()
(1)設圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標準方程;
(2)設平行于OA的直線l與圓M相交于B、C兩點,且BC=OA,求直線l的方程;
(3)設點T(t,o)滿足:存在圓M上的兩點P和Q,使得
,求實數t的取值范圍。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com