【題目】關于平面向量,有下列四個命題:
①若
.
②
=(1,1),
=(2,x),若
與
平行,則x=2.
③非零向量
和
滿足|
|=|
|=|
|,則
與
的夾角為60°.
④點A(1,3),B(4,﹣1),與向量
同方向的單位向量為(
).
其中真命題的序號為 . (寫出所有真命題的序號)
科目:高中數學 來源: 題型:
【題目】在公務員招聘中,既有筆試又有面試,某單位在2015年公務員考試中隨機抽取100名考生的筆試成績,按成績分為5組[50,60),[60,70),[70,80),[80,90),[90,100],得到的頻率分布直方圖如圖所示. ![]()
(1)求a值及這100名考生的平均成績;
(2)若該單位決定在成績較高的第三、四、五組中按分層抽樣抽取6名考生進入第二輪面試,現從這6名考生中抽取3名考生接受單位領導面試,設第四組中恰有1名考生接受領導面試的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD中, ![]()
(1)點E是AB的中點,點F是BC的中點,將△AED,△DCF分別沿DE,DF折起,使A,C兩點重合于點A′.求證:A′D⊥EF
(2)當BE=BF=
BC時,求三棱錐A′﹣EFD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數F(x)=
,其中f(x)=log2(x2+1),g(x)=log2(|x|+7).
(1)在實數集R上用分段函數形式寫出函數F(x)的解析式;
(2)求函數F(x)的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在三棱柱ABC-A1B1C1中,AA1B1B為正方形,BB1C1C為菱形,B1CAC1
![]()
(Ⅰ)求證:平面AA1B1B面BB1C1C;
(Ⅱ)若D是CC1中點,ADB是二面角A-CC1-B的平面角,求直線AC1與平面ABC所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:
=1(a>b>0)的離心率為
,以原點為圓心,橢圓的短半軸為半徑的圓與直線x﹣y+
=0相切,過點P(4,0)且不垂直于x軸直線l與橢圓C相交于A、B兩點.
(1)求橢圓C的方程;
(2)求
的取值范圍;
(3)若B點關于x軸的對稱點是E,證明:直線AE與x軸相交于定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=Asin(ωx+φ)+b的圖象如圖,則f(x)的解析式和S=f(1)+f(2)+f(3)+…+f(2013)+f(2014)+f(2015)+f(2016)的值分別為( ) ![]()
A.f(x)=
sin
x+1,S=2016
B.f(x)=
cos
x+1,S=2016
C.f(x)=
sin
x+1,S=2016.5
D.f(x)=
cos
x+1,S=2016.5
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com