【題目】高鐵、網(wǎng)購、移動支付和共享單車被譽為中國的“新四大發(fā)明”,彰顯出中國式創(chuàng)新的強勁活力.某移動支付公司從我市移動支付用戶中隨機抽取100名進行調(diào)查,得到如下數(shù)據(jù):
每周移動支付次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合計 | 15 | 12 | 13 | 7 | 8 | 45 |
(Ⅰ)把每周使用移動支付超過3次的用戶稱為“移動支付活躍用戶”,能否在犯錯誤概率不超過0.005的前提下,認為是否為“移動支付活躍用戶”與性別有關(guān)?
(Ⅱ)把每周使用移動支付6次及6次以上的用戶稱為“移動支付達人”,視頻率為概率,在我市所有“移動支付達人”中,隨機抽取4名用戶.
①求抽取的4名用戶中,既有男“移動支付達人”又有女“移動支付達人”的概率;
②為了鼓勵男性用戶使用移動支付,對抽出的男“移動支付達人”每人獎勵300元,記獎勵總金額為
,求
的分布列及數(shù)學期望.
附公式及表如下:![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(Ⅰ)在犯錯誤概率不超過0.005的前提下,能認為是否為“移動支付活躍用戶”與性別有關(guān).(Ⅱ)①
②見解析.
【解析】分析:(Ⅰ)由題意完成列聯(lián)表,結(jié)合列聯(lián)表計算可得
.所以在犯錯誤概率不超過0.005的前提下,能認為是否為“移動支付活躍用戶”與性別有關(guān).
(Ⅱ)視頻率為概率,在我市“移動支付達人”中,隨機抽取1名用戶,該用戶為男“移動支付達人”的概率為
,女“移動支付達人”的概率為
.
①有對立事件公式可得滿足題意的概率值為
.
②記抽出的男“移動支付達人”人數(shù)為
,則
.由題意得
,由二項分布公式首先求得Y的分布列,然后利用均值和方差的性質(zhì)可得X的分布列,計算可得
,得
的數(shù)學期望
元.
詳解:(Ⅰ)由表格數(shù)據(jù)可得
列聯(lián)表如下:
非移動支付活躍用戶 | 移動支付活躍用戶 | 合計 | |
男 | 25 | 20 | 45 |
女 | 15 | 40 | 55 |
合計 | 40 | 60 | 100 |
將列聯(lián)表中的數(shù)據(jù)代入公式計算得:
.
所以在犯錯誤概率不超過0.005的前提下,能認為是否為“移動支付活躍用戶”與性別有關(guān).
(Ⅱ)視頻率為概率,在我市“移動支付達人”中,隨機抽取1名用戶,
該用戶為男“移動支付達人”的概率為
,女“移動支付達人”的概率為
.
①抽取的4名用戶中,既有男“移動支付達人”,又有女“移動支付達人”的概率為
.
②記抽出的男“移動支付達人”人數(shù)為
,則
.
由題意得
,
;
;
;
;
.
所以
的分布列為
| 0 | 1 | 2 | 3 | 4 |
|
|
|
|
|
|
所以
的分布列為
| 0 | 300 | 600 | 900 | 1200 |
|
|
|
|
|
|
由
,得
的數(shù)學期望
元.
科目:高中數(shù)學 來源: 題型:
【題目】某學校為了解全校學生的體重情況,從全校學生中隨機抽取了100 人的體重數(shù)據(jù),得到如下頻率分布直方圖,以樣本的頻率作為總體的概率.
![]()
(1)估計這100人體重數(shù)據(jù)的平均值
和樣本方差
;(結(jié)果取整數(shù),同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)
(2)從全校學生中隨機抽取3名學生,記
為體重在
的人數(shù),求
的分布列和數(shù)學期望;
(3)由頻率分布直方圖可以認為,該校學生的體重
近似服從正態(tài)分布
.若
,則認為該校學生的體重是正常的.試判斷該校學生的體重是否正常?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等邊
的邊長為
,點
,
分別是
,
上的點,且滿足
(如圖(1)),將
沿
折起到
的位置,使二面角
成直二面角,連接
,
(如圖(2)).
![]()
(1)求證:
平面
;
(2)在線段
上是否存在點
,使直線
與平面
所成的角為
?若存在,求出
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知
是橢圓
的左、右焦點,點
在橢圓
上,且離心率為![]()
(1)求橢圓
的方程;
(2)若
的角平分線所在的直線
與橢圓
的另一個交點為
為橢圓
上的一點,當
面積最大時,求點
的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線L的參數(shù)方程為:
,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為
.
(Ⅰ)求曲線C的參數(shù)方程;
(Ⅱ)當
時,求直線l與曲線C交點的極坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為確定數(shù)學成績與玩手機之間的關(guān)系,從全校隨機抽樣調(diào)查了40名同學,其中40%的人玩手機.這40位同學的數(shù)學分數(shù)(百分制)的莖葉圖如圖①所示.數(shù)學成績不低于70分為良好,低于70分為一般.
![]()
(1)根據(jù)以上資料完成下面的
列聯(lián)表,并判斷有多大把握認為“數(shù)學成績良好與不玩手機有關(guān)系”.
數(shù)學成績良好 | 數(shù)學成績一般 | 總計 | |
不玩手機 | |||
玩手機 | |||
總計 | 40 |
(2)現(xiàn)將40名同學的數(shù)學成績分為如下5組:
,其頻率分布直方圖如圖②所示.計算這40名同學數(shù)學成績的平均數(shù),由莖葉圖得到的真實值記為
,由頻率分布直方圖得到的估計值記為
(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表),求
與
的誤差值.
![]()
(3)從這40名同學數(shù)學成績高于90分的7人中隨機選取2人,求至少有一人玩手機的概率.
附:
,
這40名同學的數(shù)學成績總和為2998分.
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直四棱柱
的棱長均相等,且BAD=60,M是側(cè)棱DD1的中點,N是棱C1D1上的點.
![]()
(1)求異面直線BD1和AM所成角的余弦值;
(2)若二面角
的大小為
,,試確定點N的位置.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(1)討論函數(shù)
的單調(diào)性;
(2)若函數(shù)
在區(qū)間
上存在兩個不同零點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,其中
.
(1)討論函數(shù)
的單調(diào)性;
(2)若函數(shù)
存在兩個極值點
,
(其中
),且
的取值范圍為
,求
的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com