【題目】四棱錐S-ABCD的底面為正方形,![]()
,AC與BD交于E,M,N分別為SD,SA的中點,
.
![]()
(1)求證:平面
平面SBD;
(2)求直線BD與平面CMN所成角的大小.
科目:高中數學 來源: 題型:
【題目】已知
,
為兩非零有理數列(即對任意的
,
,
均為有理數),
為一個無理數列(即對任意的
,
為無理數).
(1)已知
,并且
對任意的
恒成立,試求
的通項公式;
(2)若
為有理數列,試證明:對任意的
,
恒成立的充要條件為
;
(3)已知
,
,試計算
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
:
(
),右焦點
,點
在橢圓上;
(1)求橢圓C的標準方程;
(2)是否存在過原點的直線l與橢圓C交于A、B兩點,且
?若存在,請求出所有符合要求的直線;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
.
(1)求函數
在
上的單調遞增區間;
(2)將函數
的圖象向左平移
個單位長度,再將圖象上所有點的橫坐標伸長到原來的
倍(縱坐標不變),得到函數
的圖象.求證:存在無窮多個互不相同的整數
,使得
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在
中,
,
,
分別為內角
,
,
的對邊,且滿
.
(1)求
的大小;
(2)再在①
,②
,③
這三個條件中,選出兩個使
唯一確定的條件補充在下面的問題中,并解答問題.若________,________,求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列
的所有項都是不等于
的正數,
的前
項和為
,已知點
在直線
上(其中常數
,且
)數列,又
.
(1)求證數列
是等比數列;
(2)如果
,求實數
的值;
(3)若果存在
使得點
和
都在直線在
上,是否存在自然數
,當
(
)時,
恒成立?若存在,求出
的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于數列
,稱
(其中
)為數列
的前k項“波動均值”.若對任意的
,都有
,則稱數列
為“趨穩數列”.
(1)若數列1,
,2為“趨穩數列”,求
的取值范圍;
(2)若各項均為正數的等比數列
的公比
,求證:
是“趨穩數列”;
(3)已知數列
的首項為1,各項均為整數,前
項的和為
. 且對任意
,都有
, 試計算:
(
).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com