【題目】已知橢圓
的中心在原點
,焦點在
軸上,左右焦點分別為
,
,離心率為
,右焦點到右頂點的距離為1.
(1)求橢圓
的方程;
(2)過
的直線
與橢圓
交于不同的兩點
,
,則
的面積是否存在最大值?若存在,求出這個最大值及直線
的方程;若不存在,請說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列
的前
項和為
,
,
(
且
),數(shù)列
滿足:
,且
(
且
).
(Ⅰ)求數(shù)列
的通項公式;
(Ⅱ)求證:數(shù)列
為等比數(shù)列;
(Ⅲ)求數(shù)列
的前
項和的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋中裝有6個球,紅藍兩色各半,從袋中不放回取球
次,每次取1個球.
(1)求下列事件的概率:
①事件
:
,取出的球同色;
②事件
:
,第
次恰好將紅球全部取出;
(2)若第
次恰好取到第一個紅球,求抽取次數(shù)
的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系
中,圓
的參數(shù)方程為
(
是參數(shù))以原點
為極點,
軸的非負半軸為極軸,建立極坐標系,直線
的極坐標方程為
.
(1)求圓
的普通方程和的直線
直角坐標方程;
(2)設(shè)直線
與
軸交點分別是
,點
是圓
上的動點,求
的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系
中,曲線
的參數(shù)方程為
(
為參數(shù)),直線
的參數(shù)方程為
(
為常數(shù)且
,
為參數(shù)).
(1)求
和
的直角坐標方程;
(2)若
和
相交于
、
兩點,以線段
為一條邊作
的內(nèi)接矩形
,當矩形
的面積取最大值時,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某手機軟件研發(fā)公司為改進產(chǎn)品,對軟件用戶每天在線的時間進行調(diào)查,隨機抽取40名男性與20名女性對其每天在線的時間進行了調(diào)查統(tǒng)計,并繪制了如圖所示的條形圖,其中每天的在線時間4h以上(包括4h)的用戶被稱為“資深用戶”.
![]()
(1)根據(jù)上述樣本數(shù)據(jù),完成下面的2×2列聯(lián)表,并判定是否有95%的把握認為是否為“資深用戶”與性別有關(guān);
“資深用戶” | 非“資深用戶” | 總計 | |
男性 | |||
女性 | |||
總計 |
(2)用樣本估計總體,若從全體用戶中隨機抽取3人,設(shè)這3人中“資深用戶”的人數(shù)為X,求隨機變量X的分布列與數(shù)學期望.
附:
,其中n=a+b+c+d.
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com