【題目】某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數(shù)
與燒開一壺水所用時間
的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點圖(如下圖).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
表中
,
.
![]()
(1)根據(jù)散點圖判斷,
與
哪一個更適宜作燒水時間
關于開關旋鈕旋轉的弧度數(shù)
的回歸方程類型?(不必說明理由)
(2)根據(jù)判斷結果和表中數(shù)據(jù),建立
關于
的回歸方程;
(3)若單位時間內(nèi)煤氣輸出量
與旋轉的弧度數(shù)
成正比,那么,利用第(2)問求得的回歸方程知
為多少時,燒開一壺水最省煤氣?
附:對于一組數(shù)據(jù)
,其回歸直線
的斜率和截距的最小二乘法估計值分別為
,![]()
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系
中,圓
的參數(shù)方程為
(
為參數(shù)),以直角坐標系的原點
為極點,
軸正半軸為極軸建立極坐標系.
(1)求圓
的極坐標方程;
(2)設曲線
的極坐標方程為
,曲線
的極坐標方程為
,求三條曲線
,
,
所圍成圖形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面上動點
到點
距離比它到直線
距離少1.
(1)求動點
的軌跡方程;
(2)記動點
的軌跡為曲線
,過點
作直線
與曲線
交于
兩點,點
,延長
,
,與曲線
交于
,
兩點,若直線
,
的斜率分別為
,
,試探究
是否為定值?若為定值,請求出定值,若不為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間與極值;
(Ⅱ)若不等式
對任意
恒成立,求實數(shù)
的取值范圍;
(Ⅲ)求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在棱長為
的正方體
中,
為
的中點,
為
上任意一點,
,
為
上兩動點,且
的長為定值,則下面四個值中不是定值的是( )
![]()
A.點
到平面
的距離B.直線
與平面
所成的角
C.三棱錐
的體積D.二面角
的大小
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設向量
,
,其中
,則下列判斷錯誤的是( )
A.向量
與
軸正方向的夾角為定值(與
、
之值無關)
B.
的最大值為![]()
C.
與
夾角的最大值為![]()
D.
的最大值為l
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知單調(diào)等比數(shù)列
中,首項為
,其前n項和是
,且
成等差數(shù)列,數(shù)列
滿足條件![]()
(Ⅰ) 求數(shù)列
、
的通項公式;
(Ⅱ) 設
,記數(shù)列
的前
項和
.
①求
;②求正整數(shù)
,使得對任意
,均有
.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com