【題目】深受廣大球迷喜愛的某支歐洲足球隊.在對球員的使用上總是進行數據分析,為了考察甲球員對球隊的貢獻,現作如下數據統計:
球隊勝 | 球隊負 | 總計 | |
甲參加 | 22 | b | 30 |
甲未參加 | c | 12 | d |
總計 | 30 | e | n |
(1)求b,c,d,e,n的值,據此能否有97.7%的把握認為球隊勝利與甲球員參賽有關;
(2)根據以往的數據統計,乙球員能夠勝任前鋒、中鋒、后衛以及守門員四個位置,且出場率分別為:0.2,0.5,0.2,0.1,當出任前鋒、中鋒、后衛以及守門員時,球隊輸球的概率依次為:0.4,0.2,0.6,0.2.則:
當他參加比賽時,求球隊某場比賽輸球的概率;
當他參加比賽時,在球隊輸了某場比賽的條件下,求乙球員擔當前鋒的概率;
附表及公式:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 7.879 | 10.828 |
.
科目:高中數學 來源: 題型:
【題目】某藝校在一天的6節課中隨機安排語文、數學、外語三門文化課和其他三門藝術課各1節,則在課程表上的相鄰兩節文化課之間最多間隔1節藝術課的概率為(用數字作答).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知箱中裝有4個白球和5個黑球,且規定:取出一個白球得2分,取出一個黑球得1分.現從該箱中任。o放回,且每球取到的機會均等)3個球,記隨機變量X為取出此3球所得分數之和.
(1)求X的分布列;
(2)求X的數學期望E(X).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知等腰梯形
中,
是
的中點,![]()
,將
沿著
翻折成
,使平面
平面
.
![]()
![]()
(Ⅰ)求證:
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)在線段
上是否存在點P,使得
平面
,若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1. ![]()
(1)證明:PC⊥AD;
(2)求二面角A﹣PC﹣D的正弦值;
(3)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x﹣ln(x+a)的最小值為0,其中a>0.
(1)求a的值;
(2)若對任意的x∈[0,+∞),有f(x)≤kx2成立,求實數k的最小值;
(3)證明:
(n∈N*).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業響應省政府號召,對現有設備進行改造,為了分析設備改造前后的效果,現從設備改造前后生產的大量產品中各抽取了
件產品作為樣本,檢測一項質量指標值,若該項質量指標值落在
內的產品視為合格品,否則為不合格品.如圖是設備改造前的樣本的頻率分布直方圖,表
是設備改造后的樣本的頻數分布表.
![]()
表:設備改造后樣本的頻數分布表
質量指標值 |
|
|
|
|
|
|
頻數 |
|
|
|
|
|
|
(1)完成下面的
列聯表,并判斷是否有
的把握認為該企業生產的這種產品的質量指標值與設備改造有關;
設備改造前 | 設備改造后 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
(2)根據頻率分布直方圖和表 提供的數據,試從產品合格率的角度對改造前后設備的優劣進行比較;
(3)企業將不合格品全部銷毀后,根據客戶需求對合格品進行登記細分,質量指標值落在
內的定為一等品,每件售價
元;質量指標值落在
或
內的定為二等品,每件售價
元;其它的合格品定為三等品,每件售價
元.根據表
的數據,用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產品中抽到一件相應等級產品的概率.現有一名顧客隨機購買兩件產品,設其支付的費用為
(單位:元),求
的分布列和數學期望.
附:
|
|
|
|
|
|
|
|
|
|
|
|
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com