在橢圓
中,
為橢圓上的一點,過坐標原點的直線交橢圓于
兩點,其中
在第一象限,過
作
軸的垂線,垂足為
,連接
,
(1)若直線
與
的斜率均存在,問它們的斜率之積是否為定值,若是,求出這個定值,若不是,說明理由;
(2)若
為
的延長線與橢圓的交點,求證:
.
科目:高中數學 來源: 題型:
| 3 |
| 1 |
| 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
| x2 |
| a2 |
| y2 |
| b2 |
| 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
| x2 |
| a2 |
| y2 |
| b2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
設F1、F2分別為橢圓C:
=1(a>b>0)的左、右兩個焦點.
(1)若橢圓C上的點A(1,
)到F1、F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標;
(2)設點P是(1)中所得橢圓上的動點,當P在何位置時,
最大,說明理由,并求出最大值。
查看答案和解析>>
科目:高中數學 來源:2011-2012學年山東省菏澤市高三5月高考沖刺題文科數學試卷(解析版) 題型:解答題
已知點
為圓
上的動點,且
不在
軸上,
軸,垂足為
,線段
中點
的軌跡為曲線
,過定點![]()
任作一條與
軸不垂直的直線
,它與曲線
交于
、
兩點。
(I)求曲線
的方程;
(II)試證明:在
軸上存在定點
,使得
總能被
軸平分
【解析】第一問中設
為曲線
上的任意一點,則點
在圓
上,
∴
,曲線
的方程為![]()
第二問中,設點
的坐標為
,直線
的方程為
, ………………3分
代入曲線
的方程
,可得 ![]()
∵
,∴![]()
確定結論直線
與曲線
總有兩個公共點.
然后設點
,
的坐標分別
,
,則
,
要使
被
軸平分,只要
得到。
(1)設
為曲線
上的任意一點,則點
在圓
上,
∴
,曲線
的方程為
. ………………2分
(2)設點
的坐標為
,直線
的方程為
, ………………3分
代入曲線
的方程
,可得
,……5分
∵
,∴
,
∴直線
與曲線
總有兩個公共點.(也可根據點M在橢圓
的內部得到此結論)
………………6分
設點
,
的坐標分別
,
,則
,
要使
被
軸平分,只要
,
………………9分
即
,
, ………………10分
也就是
,
,
即
,即只要
………………12分
當
時,(*)對任意的s都成立,從而
總能被
軸平分.
所以在x軸上存在定點
,使得
總能被
軸平分
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com