.(本小題滿分14分)已知函數f (x)=lnx,g(x)=ex.
( I)若函數φ (x) = f (x)-
,求函數φ (x)的單調區間;
(Ⅱ)設直線l為函數的圖象上一點A(x0,f (x0))處的切線.證明:在區間(1,+∞)上存在唯一的x0,使得直線l與曲線y=g(x)相切.
解:(Ⅰ) ![]()
,
.·················· 2分
∵
且
,
∴![]()
∴函數
的單調遞增區間為
.··············· 4分
(Ⅱ)∵
,∴
,
∴ 切線
的方程為
,
即
, 、 ··················· 6分
設直線
與曲線
相切于點
,
∵
,∴
,∴
.··············· 8分
∴直線
也為
,
即
, ②···················· 9分
由①②得
,
∴
.·························· 11分
下證:在區間(1,+
)上
存在且唯一.
由(Ⅰ)可知,![]()
在區間
上遞增.
又
,
,······ 13分
結合零點存在性定理,說明方程
必在區間
上有唯一的根,這個根就是所求的唯一
.
故結論成立.
【解析】略
科目:高中數學 來源: 題型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為
(a>b>0),曲線C2的方程為y=
,且曲線C1與C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數學 來源:2011年江西省撫州市教研室高二上學期期末數學理卷(A) 題型:解答題
(本小題滿分14分)
已知
=2,點(
)在函數
的圖像上,其中
=
.
(1)證明:數列
}是等比數列;
(2)設
,求
及數列{
}的通項公式;
(3)記
,求數列{
}的前n項和
,并證明
.
查看答案和解析>>
科目:高中數學 來源:2015屆山東省威海市高一上學期期末考試數學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網店對一應季商品過去20天的銷售價格及銷售量進行了監測統計發現,第
天(
)的銷售價格(單位:元)為
,第
天的銷售量為
,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額
關于第
天的函數關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年廣東省高三下學期第一次月考文科數學試卷(解析版) 題型:解答題
(本小題滿分14分)已知
的圖像在點
處的切線與直線
平行.
⑴ 求
,
滿足的關系式;
⑵ 若
上恒成立,求
的取值范圍;
⑶ 證明:
(
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com