【題目】如圖,在四棱錐
中,平面
平面
,
,
,
.
![]()
(1)證明
(2)設(shè)點(diǎn)
在線段
上,且
,若
的面積為
,求四棱錐
的體積
【答案】(1)見解析;(2)![]()
【解析】
(1)推導(dǎo)出BA⊥AD,BA⊥PD,AP⊥PD,從而PD⊥平面PAB,由此能證明PD⊥PB.
(2)設(shè)AD=2a,則AB=BC=AP=a,PD
a,
,得
為等腰三角形,利用
推得
面積,進(jìn)而求出a=2,由此能求出四棱錐P﹣ABCD的體積.
(1)
平面
平面
,
平面
,
,
在
中,
,
,
由正弦定理可得:
,
,∴PD⊥PA,又PA∩AB=A,
∴
平面
,
.
(2)取
的中點(diǎn)
,連結(jié)
,
,設(shè)AD=2a,則AB=BC=AP=a,PD
a,則
,∴
為等腰三角形,且底邊BC上的高為![]()
,
的面積為
.
的面積為
,
解得:
,
四梭錐
的體積為
.
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底面
是正方形,且
,平面
平面
,
,點(diǎn)
為線段
的中點(diǎn),點(diǎn)
是線段
上的一個動點(diǎn).
![]()
(Ⅰ)求證:平面
平面
;
(Ⅱ)設(shè)二面角
的平面角為
,試判斷在線段
上是否存在這樣的點(diǎn)
,使得
,若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
(其中t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為
.
(1)求l和C的直角坐標(biāo)方程.
(2)設(shè)點(diǎn)
,直線l交曲線C于A,B兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,已知曲線
的極坐標(biāo)方程為
(
),直線
的參數(shù)方程為
(
為參數(shù)).
(1)寫出曲線
的直角坐標(biāo)方程和直線
的普通方程;
(2)己知點(diǎn)
,直線
與曲線
交于
,
兩點(diǎn),若
,
,
成等比數(shù)列,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)).以原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,且曲線
的極坐標(biāo)方程為
.
(1)寫出直線
的普通方程與曲線
的直角坐標(biāo)方程;
(2)設(shè)直線
上的定點(diǎn)
在曲線
外且其到
上的點(diǎn)的最短距離為
,試求點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線C1的極坐標(biāo)方程是
,在以極點(diǎn)為原點(diǎn)O,極軸為x軸正半軸(兩坐標(biāo)系取相同的單位長度)的直角坐標(biāo)系xOy中,曲線C2的參數(shù)方程為
(θ為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程與曲線C2的普通方程;
(2)將曲線C2經(jīng)過伸縮變換
后得到曲線C3,若M,N分別是曲線C1和曲線C3上的動點(diǎn),求|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點(diǎn)
在正視圖上的對應(yīng)點(diǎn)為
,圓柱表面上的點(diǎn)
在左視圖上的對應(yīng)點(diǎn)為
,則在此圓柱側(cè)面上,從
到
的路徑中,最短路徑的長度為( )
![]()
A.
B.
C.
D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(Ⅰ)求直線
的直角坐標(biāo)方程與曲線
的普通方程;
(Ⅱ)已知點(diǎn)
設(shè)直線
與曲線
相交于
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某手機(jī)生產(chǎn)企業(yè)為了對研發(fā)的一批最新款手機(jī)進(jìn)行合理定價,將該款手機(jī)按事先擬定的價格進(jìn)行試銷,得到單價
(單位:千元)與銷量
(單位:百件)的關(guān)系如下表所示:
單價 | 1 | 1.5 | 2 | 2.5 | 3 |
銷量 | 10 | 8 | 7 | 6 |
|
已知
.
(Ⅰ)若變量
,
具有線性相關(guān)關(guān)系,求產(chǎn)品銷量
(百件)關(guān)于試銷單價
(千元)的線性回歸方程
;
(Ⅱ)用(Ⅰ)中所求的線性回歸方程得到與
對應(yīng)的產(chǎn)品銷量的估計值
,當(dāng)銷售數(shù)據(jù)
對應(yīng)的殘差滿足
時,則稱
為一個“好數(shù)據(jù)”,現(xiàn)從5個銷售數(shù)據(jù)中任取3個,求其中“好數(shù)據(jù)”的個數(shù)
的分布列和數(shù)學(xué)期望.
參考公式:
,
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com