【題目】已知數列{an}的通項公式為an=n2-n-30.
(1)求數列的前三項,60是此數列的第幾項?
(2)n為何值時,an=0,an>0,an<0?
(3)該數列前n項和Sn是否存在最值?說明理由.
【答案】(1)第10項 (2)0<n<6(n∈N*) (3)不存在,見解析
【解析】解:(1)由an=n2-n-30,得
a1=1-1-30=-30,
a2=22-2-30=-28,
a3=32-3-30=-24.
設an=60,則60=n2-n-30.
解之得n=10或n=-9(舍去).
∴60是此數列的第10項.
(2)令an=n2-n-30=0,
解得n=6或n=-5(舍去),∴a6=0.
令n2-n-30>0,
解得n>6或n<-5(舍去).
∴當n>6(n∈N*)時,an>0.
令n2-n-30<0,解得0<n<6,
∴當0<n<6(n∈N*)時,an<0.
(3)Sn存在最小值,不存在最大值.
由an=n2-n-30=(n-
)2-30
,(n∈N*)
知{an}是遞增數列,且
a1<a2<…<a5<a6=0<a7<a8<a9<…,
故Sn存在最小值S5=S6,不存在Sn的最大值.
科目:高中數學 來源: 題型:
【題目】若存在實常數
和
,使得函數
和
對其公共定義域上的任意實數
都滿足:
和
恒成立,則稱此直線
為
和
的“隔離直線”,已知函數
,
,
,下列命題為真命題的是( )
A.
在
內單調遞減
B.
和
之間存在“隔離直線”,且
的最小值為![]()
C.
和
之間存在“隔離直線”,且
的取值范圍是![]()
D.
和
之間存在唯一的“隔離直線”![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E的一個頂點為
,焦點在x軸上,若橢圓的右焦點到直線
的距離是3.
求橢圓E的方程;
設過點A的直線l與該橢圓交于另一點B,當弦AB的長度最大時,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點
是拋物線
的焦點,若點
在拋物線
上,且![]()
求拋物線
的方程;
動直線
與拋物線
相交于
兩點,問:在
軸上是否存在定點
其中
,使得向量
與向量
共線
其中
為坐標原點
?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,曲線
的極坐標方程為
.現以極點
為原點,極軸為
軸的非負半軸建立平面直角坐標系,直線
的參數方程為
(
為參數).
(1)求曲線
的直角坐標系方程和直線
的普通方程;
(2)點
在曲線
上,且到直線
的距離為
,求符合條件的
點的直角坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知等腰直角三角形
的斜邊
所在直線方程為
,其中
點在
點上方,直角頂點
的坐標為
.
![]()
(1)求
邊上的高線
所在直線的方程;
(2)求等腰直角三角形
的外接圓的標準方程;
(3)分別求兩直角邊
,
所在直線的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com