【題目】在直三棱柱
中,
,
,
.
![]()
(1)求異面直線
與
所成角的正切值;
(2)求直線
與平面
所成角的余弦值.
【答案】(1)
;(2)
.
【解析】
以點(diǎn)
為坐標(biāo)原點(diǎn),
、
、
所在直線分別為
、
、
軸建立空間直角坐標(biāo)系
.
(1)利用空間向量法求出
與
所成角的余弦值,再利用同角三角函數(shù)的基本關(guān)系可得出答案;
(2)利用空間向量法求出直線
與平面
所成角的正弦值,再利用同角三角函數(shù)的基本關(guān)系可得出答案.
在直三棱柱
中,
,以點(diǎn)
為坐標(biāo)原點(diǎn),
、
、
所在直線分別為
、
、
軸建立空間直角坐標(biāo)系
,如下圖所示:
![]()
則點(diǎn)
、
、
、
、
、
.
(1)設(shè)異面直線
與
所成角為
,
,
,
,即
,
,
則
,因此,異面直線
與
所成角的正切值為
;
(2)設(shè)直線
與平面
所成角為
,設(shè)平面
的一個(gè)法向量為
,
,
,
,
由
,得
,取
,得
,
所以,平面
的一個(gè)法向量為
,
,
,則
.
因此,直線
與平面
所成角的余弦值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果存在常數(shù)a,使得數(shù)列{an}滿足:若x是數(shù)列{an}中的一項(xiàng),則a-x也是數(shù)列{an}中的一項(xiàng),稱數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.
(1)若數(shù)列:2,3,6,m(m>6)是“兌換系數(shù)”為a的“兌換數(shù)列”,求m和a的值;
(2)已知有窮等差數(shù)列{bn}的項(xiàng)數(shù)是n0(n0≥3),所有項(xiàng)之和是B,求證:數(shù)列{bn}是“兌換數(shù)列”,并用n0和B表示它的“兌換系數(shù)”;
(3)對(duì)于一個(gè)不少于3項(xiàng),且各項(xiàng)皆為正整數(shù)的遞增數(shù)列{cn},是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)![]()
(1)討論
的單調(diào)性;
(2)若方程
有兩個(gè)不相等的實(shí)數(shù)根,求證:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間及極值;
(2)討論函數(shù)
的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
,函數(shù)
.
(1)求實(shí)數(shù)
的值,使得
為奇函數(shù);
(2)若關(guān)于
的方程
有兩個(gè)不同實(shí)數(shù)解,求
的取值范圍;
(3)若關(guān)于
的不等式
對(duì)任意
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為
(
為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)過(guò)點(diǎn)
,傾斜角為
的直線l與曲線C相交于M,N兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量
,
,
.
(
)求函數(shù)
的單增區(qū)間.
(
)若
,求
值.
(
)在
中,角
,
,
的對(duì)邊分別是
,
,
.且滿足
,求函數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓
焦點(diǎn)在
軸上,離心率為
,上焦點(diǎn)到上頂點(diǎn)距離為
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)直線
與橢圓
交與
兩點(diǎn),
為坐標(biāo)原點(diǎn),
的面積
,則
是否為定值,若是求出定值;若不是,說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com